
IPv8 Documentation
Release 2.13.0

Tribler

Apr 11, 2024

PRELIMINARIES:

1 Why does IPv8 exist? 3

2 IPv8 Features 5

3 The science behind IPv8 7

4 IPv8 Example 9

5 Getting help 11

6 Table of contents 13
6.1 Installing Libsodium (Windows and MacOS only) . 13
6.2 Creating your first overlay . 13
6.3 Storing states in IPv8 . 19
6.4 Unit Testing Overlays . 22
6.5 Task Management . 30
6.6 Network IO and the DiscoveryStrategy . 34
6.7 Using the IPv8 attestation service . 36
6.8 Peer discovery basics . 40
6.9 Community Best Practices . 41
6.10 IPv8 configuration options . 43
6.11 IPv8 bootstrapping . 45
6.12 Key generation options . 47
6.13 Message serialization . 47
6.14 Advanced attestation service usage . 56
6.15 Advanced peer discovery configuration . 58
6.16 TunnelCommunity . 60
6.17 Attestation Prototype Documentation . 61
6.18 Using the IPv8 attestation service . 70

7 Search 75

i

ii

IPv8 Documentation, Release 2.13.0

Welcome to the IPv8 documentation! This file will help you navigate the existing documentation. The documentation
will explain the concepts behind IPv8, the architecture, and guide you through making your first overlay.

PRELIMINARIES: 1

IPv8 Documentation, Release 2.13.0

2 PRELIMINARIES:

CHAPTER

ONE

WHY DOES IPV8 EXIST?

Problems with the very fabric of The Internet, IPv4, are mounting. The approach of IPv6, Mobile IP, and IPSec
is hampered by fundamental architectural problems. One solution is moving the intelligence up to a higher layer in
the protocol stack and towards the end points. Our endpoints are not dependent on any central infrastructure. Our
architecture is academically pure and fully decentralized; to the point of obsession. IPv8 is based on the principle of
self-governance. Like Bitcoin and BitTorrent, our IPv8 overlays are permissionless and require no server upkeep costs.

IPv8 aims to help restore the original Internet; for free; owned by nobody; for everyone.

3

IPv8 Documentation, Release 2.13.0

4 Chapter 1. Why does IPv8 exist?

CHAPTER

TWO

IPV8 FEATURES

IPv8 is a networking layer which offers identities, communication with some robustness, and provides hooks for higher
layers. For instance, our Internet-deployed reputation functions and ledger-based storage of reputation data. IPv8 is
designed as a mechanism to build trust. Each network overlay offers network connections to known digital identities
through public keys. Overlays are robust against several network problems and security issues. Using a custom NAT-
traversing DHT to find the current IPv4 network address, IPv8 keeps the network connectivity going, even as the IPv4
addresses change. Each network overlay keeps track of a number of neighbors and occasionally checks if they are still
responsive.

IPv8 offers global connectivity through integrated UDP NAT puncturing, announcement of your identity claim and a
web-of-trust. IPv8 has an integrated attestation service. You can use IPv8 for official verification that something is
true or authentic, according to a trustworthy attestor. By using zero-knowledge proofs we attempt to minimize privacy
leakage.

5

IPv8 Documentation, Release 2.13.0

6 Chapter 2. IPv8 Features

CHAPTER

THREE

THE SCIENCE BEHIND IPV8

IPv8 was built through years of experience and was shaped by science. Some key publications are:

• Halkes G, Pouwelse J. UDP NAT and Firewall Puncturing in the Wild. In International Conference on Research
in Networking 2011 May 9 (pp. 1-12). Springer, Berlin, Heidelberg.

• Zeilemaker N, Schoon B, Pouwelse J. Dispersy bundle synchronization. TU Delft, Parallel and Distributed
Systems. 2013 Jan.

7

IPv8 Documentation, Release 2.13.0

8 Chapter 3. The science behind IPv8

CHAPTER

FOUR

IPV8 EXAMPLE

IPv8 is a tool to build interesting distributed applications. IPv8 overlays can be used to offer various services for your
application. Our flagship application Tribler, for example, uses seven IPv8 overlays for serverless discovery. Tribler’s
services range from DHT-based lookup, Tor-inspired privacy to a completely decentralised marketplace for bandwidth.
If we take a look at Tribler’s debug screen, it shows IPv8 in action: you can observe statistics such as active neighbors
and utilized network traffic to make sure you have made a healthy overlay.

9

./resources/healthy_IPv8_overlay_collection.png

IPv8 Documentation, Release 2.13.0

10 Chapter 4. IPv8 Example

CHAPTER

FIVE

GETTING HELP

If you spotted an inconsistency in the documentation or found a bug, please let us know in a GitHub issue.

11

https://github.com/Tribler/py-ipv8/issues

IPv8 Documentation, Release 2.13.0

12 Chapter 5. Getting help

CHAPTER

SIX

TABLE OF CONTENTS

6.1 Installing Libsodium (Windows and MacOS only)

Running py-ipv8 on Windows or MacOS, requires manual installation of Libsodium.

6.1.1 Windows

1. Libsodium can be downloaded from https://download.libsodium.org/libsodium/releases/

For eg. https://download.libsodium.org/libsodium/releases/libsodium-1.0.17-msvc.zip

2. Extract the files from the zip file

3. There are two extracted directories: x64 and Win32. Select x64 for 64-bit or Win32 for 32-bit versions of
Windows, and search for libsodium.dll. You can find one inside Release/v141/dynamic/libsodium.
dll

4. Copy this libsodium.dll file and paste it in C:\Windows\system32

6.1.2 MacOS

Homebrew can be used to install libsodium:

brew install libsodium

For details, check here.

6.2 Creating your first overlay

This document assumes you have installed all of the dependencies as instructed in the README.md. You will learn
how to construct a network overlay using IPv8.

13

https://download.libsodium.org/libsodium/releases/
http://macappstore.org/libsodium/
https://github.com/Tribler/py-ipv8/blob/master/README.md

IPv8 Documentation, Release 2.13.0

6.2.1 Running the IPv8 service

Fill your main.py file with the following code:

from asyncio import run

from ipv8.configuration import get_default_configuration
from ipv8.util import run_forever
from ipv8_service import IPv8

async def start_ipv8() -> None:
Create an IPv8 object with the default settings.
ipv8 = IPv8(get_default_configuration())
await ipv8.start()

Wait forever (or until the user presses Ctrl+C)
await run_forever()

Shutdown IPv8. To keep things simple, we won't stop IPv8 in the remainder of the␣
→˓tutorial.
await ipv8.stop()

Create a new event loop and run a task that starts an IPv8 instance.
run(start_ipv8())

You can now run this file using Python as follows:

python3 main.py

You should see some debug information being printed to your terminal. If this step failed, you are probably missing
dependencies.

If everything is running correctly: congratulations! You have just run the IPv8 service for the first time.

6.2.2 Running two IPv8 services

Now that we have managed to create an IPv8-service instance, we want to create a second instance. This way we can
start testing the network overlay with multiple instances. To try this, fill your main.py file with the following code:

from asyncio import run

from ipv8.configuration import get_default_configuration
from ipv8.util import run_forever
from ipv8_service import IPv8

async def start_ipv8() -> None:
The first IPv8 will attempt to claim a port.
await IPv8(get_default_configuration()).start()
The second IPv8 will attempt to claim a port.
It cannot claim the same port and will end up claiming a different one.
await IPv8(get_default_configuration()).start()

(continues on next page)

14 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

await run_forever()

run(start_ipv8())

If you were successful, you should now see double the debug information being printed to your terminal.

6.2.3 Loading a custom overlay

Now that we can launch two instances, let’s create the actual network overlay. To do this, fill your main.py file with
the following code:

import os
from asyncio import run

from ipv8.community import Community
from ipv8.configuration import ConfigBuilder, Strategy, WalkerDefinition, default_
→˓bootstrap_defs
from ipv8.util import run_forever
from ipv8_service import IPv8

class MyCommunity(Community):
Register this community with a randomly generated community ID.
Other peers will connect to this community based on this identifier.
community_id = os.urandom(20)

async def start_communities() -> None:
for i in [1, 2]:

builder = ConfigBuilder().clear_keys().clear_overlays()
If we actually want to communicate between two different peers
we need to assign them different keys.
We will generate an EC key called 'my peer' which has 'medium'
security and will be stored in file 'ecI.pem' where 'I' is replaced
by the peer number (1 or 2).
builder.add_key("my peer", "medium", f"ec{i}.pem")
Instruct IPv8 to load our custom overlay, registered in _COMMUNITIES.
We use the 'my peer' key, which we registered before.
We will attempt to find other peers in this overlay using the
RandomWalk strategy, until we find 10 peers.
We do not provide additional startup arguments or a function to run
once the overlay has been initialized.
builder.add_overlay("MyCommunity", "my peer",

[WalkerDefinition(Strategy.RandomWalk,
10, {'timeout': 3.0})],

default_bootstrap_defs, {}, [])
await IPv8(builder.finalize(),

extra_communities={'MyCommunity': MyCommunity}).start()
await run_forever()

(continues on next page)

6.2. Creating your first overlay 15

IPv8 Documentation, Release 2.13.0

(continued from previous page)

run(start_communities())

As we replaced the default overlays, you should no longer see any debug information being printed to your terminal.
Our overlay is now loaded twice, but it is still not doing anything.

6.2.4 Printing the known peers

Like every DHT-based network overlay framework, IPv8 needs some time to find peers. We will now modify main.py
again to print the current number of peers:

import os
from asyncio import run

from ipv8.community import Community
from ipv8.configuration import ConfigBuilder, Strategy, WalkerDefinition, default_
→˓bootstrap_defs
from ipv8.peerdiscovery.network import PeerObserver
from ipv8.types import Peer
from ipv8.util import run_forever
from ipv8_service import IPv8

class MyCommunity(Community, PeerObserver):
community_id = os.urandom(20)

def on_peer_added(self, peer: Peer) -> None:
print("I am:", self.my_peer, "I found:", peer)

def on_peer_removed(self, peer: Peer) -> None:
pass

def started(self) -> None:
self.network.add_peer_observer(self)

async def start_communities() -> None:
for i in [1, 2]:

builder = ConfigBuilder().clear_keys().clear_overlays()
builder.add_key("my peer", "medium", f"ec{i}.pem")
We provide the 'started' function to the 'on_start'.
We will call the overlay's 'started' function without any
arguments once IPv8 is initialized.
builder.add_overlay("MyCommunity", "my peer",

[WalkerDefinition(Strategy.RandomWalk,
10, {'timeout': 3.0})],

default_bootstrap_defs, {}, [('started',)])
await IPv8(builder.finalize(),

extra_communities={'MyCommunity': MyCommunity}).start()
await run_forever()

(continues on next page)

16 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

run(start_communities())

Running this should yield something like the following output:

$ python main.py
I am: Peer<0.0.0.0:0:8090, dxGFpQ4awTMz826HOVCB5OoiPPI=> I found: Peer<0.0.0.0:0:8091,␣
→˓YfHrKJR4O72/k/FBYYxMIQwOb1U=>
I am: Peer<0.0.0.0:0:8091, YfHrKJR4O72/k/FBYYxMIQwOb1U=> I found: Peer<0.0.0.0:0:8090,␣
→˓dxGFpQ4awTMz826HOVCB5OoiPPI=>

Warning: You should never use the address of a Peer as its identifier. A Peer’s address can change over time!
Instead, use the mid of a Peer (which is the SHA-1 hash of its public key) or its public_key.key_to_bin() (the
serialized form of the public key). The public key of a Peer never changes.

6.2.5 Adding messages

As an example for adding messages, we will now make a Lamport clock for three peers. Update your main.py once
again to contain the following code:

import os
from asyncio import run

from ipv8.community import Community, CommunitySettings
from ipv8.configuration import ConfigBuilder, Strategy, WalkerDefinition, default_
→˓bootstrap_defs
from ipv8.lazy_community import lazy_wrapper
from ipv8.messaging.payload_dataclass import dataclass
from ipv8.types import Peer
from ipv8.util import run_forever
from ipv8_service import IPv8

@dataclass(msg_id=1) # The value 1 identifies this message and must be unique per␣
→˓community
class MyMessage:

clock: int # We add an integer (technically a "long long") field "clock" to this␣
→˓message

class MyCommunity(Community):
community_id = os.urandom(20)

def __init__(self, settings: CommunitySettings) -> None:
super().__init__(settings)
Register the message handler for messages (with the identifier "1").
self.add_message_handler(MyMessage, self.on_message)
The Lamport clock this peer maintains.
This is for the example of global clock synchronization.
self.lamport_clock = 0

(continues on next page)

6.2. Creating your first overlay 17

IPv8 Documentation, Release 2.13.0

(continued from previous page)

def started(self) -> None:
async def start_communication() -> None:

if not self.lamport_clock:
If we have not started counting, try boostrapping
communication with our other known peers.
for p in self.get_peers():

self.ez_send(p, MyMessage(self.lamport_clock))
else:

self.cancel_pending_task("start_communication")

We register an asyncio task with this overlay.
This makes sure that the task ends when this overlay is unloaded.
We call the 'start_communication' function every 5.0 seconds, starting now.
self.register_task("start_communication", start_communication, interval=5.0,␣

→˓delay=0)

@lazy_wrapper(MyMessage)
def on_message(self, peer: Peer, payload: MyMessage) -> None:

Update our Lamport clock.
self.lamport_clock = max(self.lamport_clock, payload.clock) + 1
print(self.my_peer, "current clock:", self.lamport_clock)
Then synchronize with the rest of the network again.
self.ez_send(peer, MyMessage(self.lamport_clock))

async def start_communities() -> None:
for i in [1, 2, 3]:

builder = ConfigBuilder().clear_keys().clear_overlays()
builder.add_key("my peer", "medium", f"ec{i}.pem")
builder.add_overlay("MyCommunity", "my peer",

[WalkerDefinition(Strategy.RandomWalk,
10, {'timeout': 3.0})],

default_bootstrap_defs, {}, [('started',)])
await IPv8(builder.finalize(),

extra_communities={'MyCommunity': MyCommunity}).start()
await run_forever()

run(start_communities())

If you run this, you should see the three peers actively trying to establish an ever-increasing global clock value.

18 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

6.3 Storing states in IPv8

This document assumes you have a basic understanding of network overlays in IPv8, as documented in the overlay
tutorial. You will learn how to use the IPv8’s RequestCache class to store the state of message flows.

6.3.1 When you need a state

More often than not messages come in flows. For example, one peer sends out a request and another peer provides a
response. Or, as another example, your message is too big to fit into a single UDP packet and you need to keep track
of multiple smaller messages that belong together. In these cases you need to keep a state. The RequestCache class
keeps track of states and also natively includes a timeout mechanism to make sure you don’t get a memory leak.

Typically, you will use one RequestCache per network overlay, to which you add the caches that store states.

6.3.2 The hard way

The most straightforward way of interacting with the RequestCache is by adding NumberCache instances to it di-
rectly. Normally, you will use add() and pop() to respectively add new caches and remove existing caches from the
RequestCache. This is a bare-bones example of how states can be stored and retrieved:

from asyncio import create_task, run, sleep

from ipv8.requestcache import NumberCacheWithName, RequestCache

class MyState(NumberCacheWithName):

name = "my-state"

def __init__(self, request_cache: RequestCache,
identifier: int, state: int) -> None:

super().__init__(request_cache, self.name, identifier)
self.state = state

async def foo(request_cache: RequestCache) -> None:
"""
Add a new MyState cache to the global request cache.
The state variable is set to 42 and the identifier of this cache is 0.
"""
cache = MyState(request_cache, 0, 42)
request_cache.add(cache)

async def bar() -> None:
"""
Wait until a MyState cache with identifier 0 is added.
Then, remove this cache from the global request cache and print its state.
"""
Normally, you would add this to a network overlay instance.
request_cache = RequestCache()

(continues on next page)

6.3. Storing states in IPv8 19

../basics/overlay_tutorial.html
../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

(continued from previous page)

_ = create_task(foo(request_cache))

while not request_cache.has(MyState, 0):
await sleep(0.1)

cache = request_cache.pop(MyState, 0)
print("I found a cache with the state:", cache.state)

run(bar())

In the previous example we have assumed that a cache would eventually arrive. This will almost never be the case in
practice. You can overwrite the on_timeout method of your NumberCache instances to deal with cleaning up when
a cache times out. In this following example we shut down when the cache times out:

from asyncio import run, sleep

from ipv8.requestcache import NumberCacheWithName, RequestCache

class MyState(NumberCacheWithName):

name = "my-state"

def __init__(self, request_cache: RequestCache,
identifier: int, state: int) -> None:

super().__init__(request_cache, self.name, identifier)
self.state = state

def on_timeout(self) -> None:
print("Oh no! I never received a response!")

@property
def timeout_delay(self) -> float:

We will timeout after 3 seconds (default is 10 seconds)
return 3.0

async def foo() -> None:
request_cache = RequestCache()
cache = MyState(request_cache, 0, 42)
request_cache.add(cache)
await sleep(4)

run(foo())

You may notice some inconvenient properties of these caches. You need to generate a unique identifier and manually
keep track of it. This is why we have an easier way to interact with the RequestCache.

20 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

6.3.3 The easier way

Let’s look at the complete Community code for two peers that use each other to count to 10. For this toy box example we
define two messages and a single cache. Unlike when doing things the hard way, we now use a RandomNumberCache
to have IPv8 select a message identifier for us. Both the identifier fields for the messages and the name for the cache
are required. Please attentively read through this code:

We'll use this global variable to keep track of the IPv8 instances that finished.
DONE = []

@vp_compile
class MyRequest(VariablePayload):

msg_id = 1
format_list = ['I', 'I']
names = ["value", "identifier"]

@vp_compile
class MyResponse(VariablePayload):

msg_id = 2
format_list = ['I', 'I']
names = ["value", "identifier"]

class MyCache(RandomNumberCacheWithName):
name = "my-cache"

def __init__(self, request_cache: RequestCache, value: int) -> None:
super().__init__(request_cache, self.name)
self.value = value

class MyCommunity(Community):
community_id = os.urandom(20)

def __init__(self, settings: CommunitySettings) -> None:
super().__init__(settings)
self.add_message_handler(1, self.on_request)
self.add_message_handler(2, self.on_response)

This is where the magic starts: add a ``request_cache`` variable.
self.request_cache = RequestCache()

async def unload(self) -> None:
Don't forget to shut down the RequestCache when you unload the Community!
await self.request_cache.shutdown()
await super().unload()

def started(self) -> None:
self.register_task("wait for peers and send a request", self.send)

async def send(self) -> None:
(continues on next page)

6.3. Storing states in IPv8 21

IPv8 Documentation, Release 2.13.0

(continued from previous page)

Wait for our local peers to connect to eachother.
while not self.get_peers():

await sleep(0.1)
Then, create and register our cache.
cache = self.request_cache.add(MyCache(self.request_cache, 0))
If the overlay is shutting down the cache will be None.
if cache is not None:

Finally, send the overlay message to the other peer.
for peer in self.get_peers():

self.ez_send(peer, MyRequest(cache.value, cache.number))

@lazy_wrapper(MyRequest)
def on_request(self, peer: Peer, payload: MyRequest) -> None:

Our service is to increment the value of the request and send this in the␣
→˓response.

self.ez_send(peer, MyResponse(payload.value + 1, payload.identifier))

@lazy_wrapper(MyResponse)
@retrieve_cache(MyCache)
def on_response(self, peer: Peer, payload: MyResponse, cache: MyCache) -> None:

print(peer, "responded to:", cache.value, "with:", payload.value)

Stop the experiment if both peers reach a value of 10.
if payload.value == 10:

DONE.append(True)
return

Otherwise, do the same thing over again and ask for another increment.
cache = self.request_cache.add(MyCache(self.request_cache, payload.value))
if cache is not None:

for peer in self.get_peers():
self.ez_send(peer, MyRequest(payload.value, cache.number))
To spice things up, we'll perform a replay attack.
The RequestCache causes this second duplicate message to be ignored.
self.ez_send(peer, MyRequest(payload.value, cache.number))

You are encouraged to play around with this code. Also, take notice of the fact that this example includes a replay
attack (try removing the cache and see what happens).

6.4 Unit Testing Overlays

This document assumes you have a basic understanding of network overlays in IPv8, as documented in the overlay
tutorial. You will learn how to use the IPv8’s TestBase class to unit test your overlays.

22 Chapter 6. Table of contents

../basics/overlay_tutorial.html
../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

6.4.1 Files

This tutorial will place all of its files in the ~/Documents/ipv8_tutorial directory. You are free to choose whatever
directory you want, to place your files in. This tutorial uses the following files in the working directory:

community.py
test_community.py

We will use the following community.py in this tutorial:

import os
import unittest
from typing import TYPE_CHECKING, Any

from ipv8.community import Community, CommunitySettings
from ipv8.requestcache import NumberCache, RequestCache
from ipv8.test.base import TestBase
from ipv8.test.mocking.ipv8 import MockIPv8

if TYPE_CHECKING:
from ipv8.messaging.payload import IntroductionRequestPayload
from ipv8.messaging.payload_headers import GlobalTimeDistributionPayload
from ipv8.types import Peer

class MyCache(NumberCache):

def __init__(self, request_cache: RequestCache, overlay: MyCommunity) -> None:
super().__init__(request_cache, "", 0)
self.overlay = overlay

def on_timeout(self) -> None:
self.overlay.timed_out = True

class MyCommunitySettings(CommunitySettings):
some_constant: int | None = None

class MyCommunity(Community):
community_id = os.urandom(20)
settings_class = MyCommunitySettings

def __init__(self, settings: MyCommunitySettings) -> None:
super().__init__(settings)
self.request_cache = RequestCache()

self._some_constant = 42 if settings.some_constant is None else settings.some_
→˓constant

self.last_peer = None
self.timed_out = False

async def unload(self) -> None:
await self.request_cache.shutdown()

(continues on next page)

6.4. Unit Testing Overlays 23

IPv8 Documentation, Release 2.13.0

(continued from previous page)

await super().unload()

def some_constant(self) -> int:
return self._some_constant

def introduction_request_callback(self, peer: Peer,
dist: GlobalTimeDistributionPayload,
payload: IntroductionRequestPayload) -> None:

self.last_peer = peer

def add_cache(self) -> None:
self.request_cache.add(MyCache(self.request_cache, self))

You’re encouraged to fill test_community.py yourself as you read through this tutorial.

6.4.2 Why and How?

After playing around with your first overlay, you may have discovered that running multiple processes and configuring
your communities to test functionality is not very easy or reproducible. We certainly have. Therefore, we have created
the TestBase class with all the tools you need to mock the Internet and make beautiful unit tests.

Because TestBase is a subclass of unittest.TestCase you can use common unit testing convenience methods, like
testEqual, testTrue, setUp, setUpClass, etc. This also means that TestBase can be used with just about any
test runner out there (like unittest, nosetests or pytest).

The way we will run our unit tests in this tutorial is with:

python3 -m unittest test_community.py

If you have custom logic in your subclass, please make sure to call your super() methods. Here’s an example of
custom setUp and tearDown methods:

class MyTests(TestBase[MyCommunity]):

def setUp(self) -> None:
super().setUp()
Insert your setUp logic here

async def tearDown(self) -> None:
await super().tearDown()
Insert your tearDown logic here

6.4.3 Deadlock Detection

Before you start testing, you need to be warned about TestBase.MAX_TEST_TIME. By default, TestBase.
MAX_TEST_TIME is set to 10 seconds. This means that if your testing class takes more than 10 seconds, TestBase
will terminate it.

We should probably mention that in proper software engineering a unit test case should never take 10 seconds. However,
we’re not here to judge. If you want this timeout increased, simply overwrite the value of MAX_TEST_TIME in your
subclass. For example:

24 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

class MyTests(TestBase):

MAX_TEST_TIME = 30.0 # Now this class can take 30 seconds

6.4.4 Creating Instances

The initialize() method takes care of initializing your Community subclass for you. It’s as easy as this:

async def test_call(self) -> None:
"""
Create a MyCommunity and check the output of some_constant().
"""
Create 1 MyCommunity
self.initialize(MyCommunity, 1)

Nodes are 0-indexed
value = self.overlay(0).some_constant()

self.assertEqual(42, value)

What happened here? First, we instructed TestBase to create 1 instance of MyCommunity using initialize(). As
a side note: the raw information needed to make this happen (the mocking of the Internet and the interconnection of
overlays) is actually stored in the nodes list of TestBase. Second, we ask our TestBase to give us the overlay instance
of node 0, which is our only node. The overlay() method is one of the many convenience methods in TestBase to
access common data in overlays. We’ll provide a complete list of these convenience methods later in this document.
Last, we use a common unittest.TestCase assertion to check if our some_constant() overlay method returned
42.

In some cases, you might need to give additional parameters to your Community’s __init__()method. In these cases,
you can simply add additional keyword arguments to initialize().

async def test_call2(self) -> None:
"""
Create a MyCommunity with a custom some_constant.
"""
self.initialize(MyCommunity, 1, MyCommunitySettings(some_constant=7))

value = self.overlay(0).some_constant()

self.assertEqual(7, value)

In yet more advanced use cases, you may want to provide your own MockIPv8 instances. This will usually be the case
if your Community instance only supports specific keys. Commonly, Community instances may choose to only support
curve25519 keys, which you can do as follows:

def create_node(self, *args: Any, **kwargs) -> MockIPv8:
return MockIPv8("curve25519", self.overlay_class, *args, **kwargs)

6.4. Unit Testing Overlays 25

IPv8 Documentation, Release 2.13.0

6.4.5 Communication

You should now be able to create Community instances and call their methods. However, these instances are not
communicating with each other yet. Take note of this code in our Community instance that stores the last peer that sent
us an introduction request:

def introduction_request_callback(self, peer: Peer,
dist: GlobalTimeDistributionPayload,
payload: IntroductionRequestPayload) -> None:

self.last_peer = peer

This code simply stores whatever Peer object last sent us a request. We’ll create a unit test to test whether this happened:

async def test_intro_called(self) -> None:
"""
Check if we got a request from another MyCommunity.
"""
self.initialize(MyCommunity, 2)

We have the overlay of Peer 0 send a message to Peer 1.
self.overlay(0).send_introduction_request(self.peer(1))
Our test is running in the asyncio main thread!
Let's yield to allow messages to be passed.
await self.deliver_messages()

Peer 1 should have received the message from Peer 0.
self.assertEqual(self.peer(0), self.overlay(1).last_peer)

Let’s run through this example. First we create two instances of MyCommunity using initialize(). Second, we
instruct the first node in our test to send a message to our second node. Here send_introduction_request()
creates and sends a message to another peer and deliver_messages() allows it to be received. Lastly, we assert that
our second node received a message from our first node.

Note that the asyncio programming model of Python executes its events on the main thread (the event loop), including
this test case and the communication that is caused by it. In other words, since the test itself is occupying the main
thread, the messaging will only happen after our test is finished! By the time it is allowed to execute, the communication
is already cancelled. The deliver_messages() method backs off for a given amount of time and then waits for the
main thread to be freed.

Now comes the caveat. The main thread being freed may not mean your Community is actually done doing stuff. It
is possible to schedule asyncio events in such a way that deliver_messages() can’t detect them. This commonly
happens when you use threading or hardware (like sockets). In these exceptional cases, you can use asyncio.sleep()
or, better yet, await a custom Future in the test.

6.4.6 Piggybacking on Introductions

Some Community instances prefer to piggyback information onto introductions. As TestBase simply adds peers to
each other directly, this piggybacked information is not sent. The introduce_nodes() method allows you to send
these introductions anyway, used as follows (note the absence of deliver_messages()):

async def test_intro_called2(self) -> None:
"""
Check if we got a request from another MyCommunity.
"""

(continues on next page)

26 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

self.initialize(MyCommunity, 2)

await self.introduce_nodes()

self.assertEqual(self.peer(0), self.overlay(1).last_peer)
self.assertEqual(self.peer(1), self.overlay(0).last_peer)

6.4.7 Using the RequestCache

In real Community instances, you will have many timeouts and lots of timeout logic in caches. To make it easier to
trigger these timeouts in the RequestCache, we use the passthrough() method. Here’s an example:

async def test_passthrough(self) -> None:
"""
Check if a cache time out is properly handled.
"""
self.initialize(MyCommunity, 1)

with self.overlay(0).request_cache.passthrough():
self.overlay(0).add_cache()

await self.deliver_messages()

self.assertTrue(self.overlay(0).timed_out)

In this example we use the passthrough() contextmanager while we invoke a function that adds a cache. This causes
the timeout of the MyCache cache we add inside add_cache to be nullified and instantly fire. Do note that this timeout
occurs in the asyncio event loop and we need to allow it to fire. To yield the main thread we use deliver_messages()
again (though in this case await asyncio.sleep(0.0) would have also done the trick).

In some complex cases you may have more than one type of cache being added. In these cases you can add a fil-
ter to passthrough() to make it only nullify some particular classes (simply add these classes as arguments to
passthrough()):

async def test_passthrough2(self) -> None:
"""
Check if a cache time out is properly handled.
"""
self.initialize(MyCommunity, 1)

with self.overlay(0).request_cache.passthrough(MyCache):
self.overlay(0).add_cache()

await self.deliver_messages()

self.assertTrue(self.overlay(0).timed_out)

6.4. Unit Testing Overlays 27

IPv8 Documentation, Release 2.13.0

6.4.8 Fragile Packet Handling

By default IPv8 adds a general exception handler in Community instances, to disallow external messages crashing you.
However, when testing, this exception handler is removed by TestBase. If you want to enable the general exception
handler again, you can either add your class to the production_overlay_classes list or overwrite TestBase.
patch_overlays(). For example:

def patch_overlays(self, i: int) -> None:
if i == 1:

pass # We'll run the general exception handler for Peer 1
else:

super().patch_overlays(i)

6.4.9 Temporary Files

In some cases, you may require temporary files in your unit tests. TestBase exposes the temporary_directory()
method to generate directories for these files. This method is random.seed() compatible. Normally, TestBase will
clean up these files automatically for you. However, if you hard-crash TestBase before its tearDown is invoked, the
temporary directories will not be cleaned up.

The temporary directory names are prefixed with _temp_ and use a uuid as a unique name. The temporary directories
will be created in the current working directory for the mechanism to work on all supported platforms (Windows, Mac
and Linux) even with limited permissions.

6.4.10 Asserting Message Delivery

You may want to assert that an overlay receives certain messages after a function. The TestBase exposes the
assertReceivedBy() function to do just that. We’ll run through its functionality by example.

Most of the time, you will want to check if a peer received certain messages. In the following example peer 0 first sends
message 1 and then sends message 2 to peer 1. The following construction asserts this:

with self.assertReceivedBy(1, [Message1, Message2]):
self.overlay(0).send_msg_to(self.peer(1), 1)
self.overlay(0).send_msg_to(self.peer(1), 2)
await self.deliver_messages()

Sometimes, you can’t be sure in what order messages are sent. In these cases you can use ordered=False:

with self.assertReceivedBy(1, [Message1, Message2, Message2], ordered=False):
messages = [2, 1, 2]
shuffle(messages)
self.overlay(0).send_msg_to(self.peer(1), messages[0])
self.overlay(0).send_msg_to(self.peer(1), messages[1])
self.overlay(0).send_msg_to(self.peer(1), messages[2])
await self.deliver_messages()

In other cases, your overlay may be sending messages which you cannot control and/or which you don’t care about. In
these cases you can set a filter to only include the messages you want:

with self.assertReceivedBy(1, [Message1, Message2], message_filter=[Message1,␣
→˓Message2]):

self.overlay(0).send_msg_to(self.peer(1), 1)
(continues on next page)

28 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

if random() > 0.5:
self.overlay(0).send_msg_to(self.peer(1), 3)

self.overlay(0).send_msg_to(self.peer(1), 2)
await self.deliver_messages()

It may also be helpful to inspect the contents of each payload. You can simply use the return value of the assert function
to perform further inspection:

with self.assertReceivedBy(1, [Message1, Message2]) as received_messages:
self.overlay(0).send_msg_to(self.peer(1), 1)
self.overlay(0).send_msg_to(self.peer(1), 2)
await self.deliver_messages()

message1, message2 = received_messages
self.assertEqual(1, message1.value)
self.assertEqual(2, message2.value)

If you want to use assertReceivedBy(), make sure that:

1. Your overlay message handlers only handle a single payload.

2. Your messages specify a msg_id.

3. Your messages are compatible with ez_send() and lazy_wrapper_*().

6.4.11 Shortcut Reference

As usual, there is an easy and a hard way to do everything in IPv8. You are welcome to call self.nodes[i].my_peer.
public_key.key_to_bin() manually every time you wish to access the public key of node i. Or, instead, you may
use the available shortcut self.key_bin(i). You may find your unit test become a lot more readable if you use the
available TestBase shortcuts though.

Table 1: Available TestBase shortcuts

method description
address(i) The IPv4 address of peer i.
endpoint(i) The Endpoint instance of peer i.
key_bin(i) The serialized public key (bytes) of peer i.
key_bin_private(i) The serialized private key (bytes) of peer i.
mid(i) The SHA-1 of the public key of peer i.
my_peer(i) The private my_peer Peer instance of peer i.
network(i) The Network instance of peer i.
node(i) The MockIPv8 instance of peer i.
overlay(i) The Community instance of peer i.
peer(i) The public Peer instance of peer i.
private_key(i) The private key instance of peer i.
public_key(i) The public key instance of peer i.

You are encouraged to add shortcuts that may be relevant to your own Community instance in your own test class.

6.4. Unit Testing Overlays 29

IPv8 Documentation, Release 2.13.0

6.5 Task Management

This document assumes you have a basic understanding of network overlays in IPv8, as documented in the overlay tuto-
rial. You will learn how to use the IPv8’s TaskManager class to manage asyncio tasks and how to use NumberCache
to manage Future instances.

6.5.1 What is a task?

Essentially, a task is a way for asyncio to point to code that should be executed at some point. The asyncio library
checks if it has something to execute and executes it until it has no more tasks to execute. However, there are many
intricacies when dealing with tasks. Consider the following example:

import asyncio

COMPLETED = []

async def execute_me_too(i: int) -> None:
await asyncio.sleep(0.5)
COMPLETED.append(i)

async def execute_me() -> None:
execute_me_too(1) # 1
await execute_me_too(2) # 2
COMPLETED.append(3) # 3
_ = asyncio.ensure_future(execute_me_too(4)) # 4
COMPLETED.append(5) # 5
await asyncio.sleep(1) # 6

asyncio.run(execute_me())
print(COMPLETED)

Can you guess what will be printed?

The correct answer is [2, 3, 5, 4] and equally important is that the answer changes to [2, 3, 5] if you omit the
final await asyncio.sleep(1). Feel free to skip to the “The TaskManager” section if both of these answers are
obvious to you.

Let’s run through execute_me() to explain this behavior:

1. The execute_me_too(1) will not be executed, though your application will not crash. You will be informed of
this through the RuntimeWarning: coroutine 'execute_me_too' was never awaited warning mes-
sage. You should have awaited this execute_me_too call, we do this properly in the next line.

2. By awaiting execute_me_too(2) the execute_me() call will wait until execute_me_too(2) has finished
executing. This adds the value 2 to the COMPLETED list.

3. After waiting for execute_me_too(2) to finish COMPLETED.append(3) is allowed to append the value 3 to
the COMPLETED list.

4. By creating a future for execute_me_too(4), we allow execute_me() to continue executing.

5. While we wait for execute_me_too(4) to finish, COMPLETED.append(5) can already access the COMPLETED
list and insert its value 5.

6. While execute_me() waits for another second, execute_me_too(4) is allowed to add to the COMPLETED list.

30 Chapter 6. Table of contents

../basics/overlay_tutorial.html
../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

Note that if you had omitted await asyncio.sleep(1), the execute_me() call would not be waiting for anything
anymore and return (outputting [2, 3, 5]). Instead, the future returned by asyncio.ensure_future() should
have been awaited, as follows:

async def execute_me() -> None:
await execute_me_too(2)
COMPLETED.append(3)
fut = asyncio.ensure_future(execute_me_too(4)) # store future
COMPLETED.append(5)
await fut # await future before exiting

As an added bonus, this is also faster than the previous method. This new example will finish when the
execute_me_too(4) call completes, instead of after waiting a full second.

This concludes the basics of asyncio tasks. Now, we’ll show you how to make your life easier by using IPv8’s
TaskManager class.

6.5.2 The TaskManager

Managing Future instances and coroutine instances is complex and error-prone and, to help you with managing
these, IPv8 has the TaskManager class. The TaskManager takes care of managing all of your calls that have not
completed yet and allows you to cancel them on demand. You can even find this class in a separate PyPi repository:
https://pypi.org/project/ipv8-taskmanager/

Adding tasks

To add tasks to your TaskManager you can call register_task(). You register a task with a name, which you can
later use to inspect the state of a task or cancel it. For example:

import asyncio

from ipv8.taskmanager import TaskManager

COMPLETED = []

async def execute_me_too(i: int) -> None:
await asyncio.sleep(0.5)
COMPLETED.append(i)

async def main() -> None:
task_manager = TaskManager()

task_manager.register_task("execute_me_too1", execute_me_too, 1)
task_manager.register_task("execute_me_too2", execute_me_too, 2)
task_manager.cancel_pending_task("execute_me_too1")
await task_manager.wait_for_tasks()

await task_manager.shutdown_task_manager()
print(COMPLETED)

asyncio.run(main())

6.5. Task Management 31

https://pypi.org/project/ipv8-taskmanager/

IPv8 Documentation, Release 2.13.0

This example prints [2]. If you had not called wait_for_tasks() before shutdown_task_manager() in this ex-
ample, all of your registered tasks would have been canceled, printing [].

In some cases you may also not be interested in canceling a particular task. For this use case the
register_anonymous_task() call exists, for example:

for i in range(20):
task_manager.register_anonymous_task("execute_me_too",

execute_me_too, i)
await task_manager.wait_for_tasks()

Note that this example takes just over half a second to execute, all 20 calls to execute_me_too() are scheduled at
(almost) the same time!

Periodic and delayed tasks

Next to simply adding tasks, the TaskManager also allows you to invoke calls after a delay or periodically. The
following example will add the value 1 to the COMPLETED list periodically and inject a single value of 2 after half a
second:

async def execute_me_too(i: int, task_manager: TaskManager) -> None:
if len(COMPLETED) == 20:

task_manager.cancel_pending_task("keep adding 1")
return

COMPLETED.append(i)

async def main() -> None:
task_manager = TaskManager()

task_manager.register_task("keep adding 1", execute_me_too,
1, task_manager, interval=0.1)

task_manager.register_task("sneaky inject", execute_me_too,
2, task_manager, delay=0.5)

await task_manager.wait_for_tasks()

await task_manager.shutdown_task_manager()
print(COMPLETED)

This example prints [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Note that you can also create a task with both an interval and a delay.

Community Integration

For your convenience, every Community is also a TaskManager. However, try to avoid spawning any tasks in the
__init__ of your Community. Specifically, you could end up scheduling a task in between your Community and
other Community initialization. Working with a half-initialized IPv8 may lead to problems. This practice also makes
your Community more difficult to test.

If you do end up in a situation where you absolutely must schedule a task from the __init__(), you can use the
TaskManager’s cancel_all_pending_tasks() method to cancel all registered tasks. This is an example of how to
deal with this in your unit tests:

32 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

class TestMyCommunity(TestBase):

def create_node(self, *args: Any, **kwargs) -> MockIPv8:
mock_ipv8 = super().create_node(*args, **kwargs)
mock_ipv8.overlay.cancel_all_pending_tasks()
return mock_ipv8

async def test_something(self) -> None:
self.initialize(MyCommunity, 1) # Will not run tasks

Futures and caches

Sometimes you may find that certain tasks belong to a message context. In other words, you may have a task that
belongs to a cache (see the storing states tutorial). By registering a Future instance in your NumberCache sub-
class it will automatically be canceled when the NumberCache gets canceled or times out. You can do so using the
register_future() method. This is a complete example:

import asyncio

from ipv8.requestcache import NumberCacheWithName, RequestCache

class MyCache(NumberCacheWithName):

name = "my cache"

def __init__(self,
request_cache: RequestCache,
number: int) -> None:

super().__init__(request_cache, self.name, number)

self.awaitable = asyncio.Future()

self.register_future(self.awaitable, on_timeout=False)

@property
def timeout_delay(self) -> float:

return 1.0

def finish(self) -> None:
self.awaitable.set_result(True)

async def main() -> None:
rq = RequestCache()

rq.add(MyCache(rq, 0))
with rq.passthrough():

rq.add(MyCache(rq, 1)) # Overwritten timeout = 0.0
rq.add(MyCache(rq, 2))

future0 = rq.get(MyCache, 0).awaitable
(continues on next page)

6.5. Task Management 33

../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

(continued from previous page)

future1 = rq.get(MyCache, 1).awaitable
future2 = rq.get(MyCache, 2).awaitable

rq.get(MyCache, 0).finish()
await future0
print(f"future0.result()={future0.result()}")
rq.pop(MyCache, 0)

await future1
print(f"future1.result()={future1.result()}")

await rq.shutdown()

print(f"future2.cancelled()={future2.cancelled()}")

asyncio.run(main())

This example prints:

future0.result()=True
future1.result()=False
future2.cancelled()=True

This example showcases the three states your Future may find itself in. First, it may have been called and received an
explicit result (True in this case). Second, the future may have timed out. By default a timed-out Future will have
its result set to None, but you can even give this method an exception class to have it raise an exception for you. In
this example we set the value to False. Third and last is the case where your future was cancelled, which will raise a
asyncio.exceptions.CancelledError if you await it.

6.6 Network IO and the DiscoveryStrategy

This document assumes you have a basic understanding of asyncio tasks, as documented in the tasks tutorial. You will
learn how to use the IPv8’s DiscoveryStrategy class to avoid network congestion.

6.6.1 The DiscoveryStrategy

IPv8 only manages one socket (Endpoint), which is most likely using the UDP protocol. If every Community starts
sending at the exact same time and overpowers the UDP socket, this causes packet drops. To counter this, IPv8 has the
DiscoveryStrategy class.

An IPv8 instance will call each of its registered DiscoveryStrategy instances sequentially to avoid network I/O
clashes. If you have an interval task in your TaskManager that leads to network I/O, you should consider converting
it to a DiscoveryStrategy. You can make your own subclass as follows:

class MyDiscoveryStrategy(DiscoveryStrategy):

def take_step(self) -> None:
with self.walk_lock:

Insert your logic here. For example:
(continues on next page)

34 Chapter 6. Table of contents

../basics/tasks_tutorial.html

IPv8 Documentation, Release 2.13.0

(continued from previous page)

if self.overlay.get_peers():
peer = choice(self.overlay.get_peers())
self.overlay.send_introduction_request(peer)

Note that a DiscoveryStrategy should be thread-safe. You can use the walk_lock for thread safety.

6.6.2 Using a DiscoveryStrategy

You can register your DiscoveryStrategy with a running IPv8 instance as follows:

def main(ipv8_instance: IPv8) -> None:
overlay = ipv8_instance.get_overlay(MyCommunity)
target_peers = -1
ipv8_instance.add_strategy(overlay,

MyDiscoveryStrategy(overlay),
target_peers)

Note that we specify a target_peers argument. This argument specifies the amount of peers after which the
DiscoveryStrategy should no longer be called. Calls will be resumed when the amount of peers in your Community
dips below this value again. For example, the built-in RandomWalk strategy can be configured to stop finding new peers
after if an overlay already has 20 or more peers. In this example we have used the magic value -1, which causes IPv8
to never stop calling this strategy.

You can also load your strategy through the configuration or loader. First, an example of how to do this with the
configuration:

class MyCommunity(Community):
community_id = os.urandom(20)

def get_available_strategies(self) -> dict[str, type[DiscoveryStrategy]]:
return {"MyDiscoveryStrategy": MyDiscoveryStrategy}

definition = {
'strategy': "MyDiscoveryStrategy",
'peers': -1,
'init': {}

}

config = get_default_configuration()
config['overlays'] = [{

'class': 'MyCommunity',
'key': "anonymous id",
'walkers': [definition],
'bootstrappers': [DISPERSY_BOOTSTRAPPER.copy()],
'initialize': {},
'on_start': []

}]

Note that you can add as many strategies as you want to an overlay. Also note that for IPv8 to link the name
"MyDiscoveryStrategy" to a class, you need to define it in your Community’s get_available_strategies()
dictionary.

6.6. Network IO and the DiscoveryStrategy 35

IPv8 Documentation, Release 2.13.0

Lastly, alternatively, the way to add your custom MyDiscoveryStrategy class to a CommunityLauncher is as follows:

@overlay('my_module.some_submodule', 'MyCommunity')
@walk_strategy(MyDiscoveryStrategy)
class MyLauncher(CommunityLauncher):

pass

This is the shortest way.

6.7 Using the IPv8 attestation service

This document assumes you have a basic understanding of network overlays in IPv8, as documented in the overlay
tutorial. You will learn how to use the IPv8 attestation HTTP REST API. This tutorial will use curl to perform HTTP
GET and POST requests.

This document will cover the basic flows of identification. If you plan on using real identity data, you will need to
familiarize yourself with the the advanced identity controls.

6.7.1 Running the IPv8 service

Fill your main.py file with the following code (runnable with python3 main.py):

from asyncio import run
from base64 import b64encode

from ipv8.configuration import get_default_configuration
from ipv8.REST.rest_manager import RESTManager
from ipv8.util import run_forever
from ipv8_service import IPv8

async def start_community() -> None:
for peer_id in [1, 2]:

configuration = get_default_configuration()
configuration['keys'] = [

{'alias': "anonymous id", 'generation': "curve25519", 'file': f"keyfile_
→˓{peer_id}.pem"}]

configuration['working_directory'] = f"state_{peer_id}"
configuration['overlays'] = []

Start the IPv8 service
ipv8 = IPv8(configuration)
await ipv8.start()
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + peer_id)

Print the peer for reference
print("Starting peer", b64encode(ipv8.keys["anonymous id"].mid))

await run_forever()

(continues on next page)

36 Chapter 6. Table of contents

../basics/overlay_tutorial.html
../basics/overlay_tutorial.html
../further-reading/advanced_identity.html

IPv8 Documentation, Release 2.13.0

(continued from previous page)

run(start_community())

Running the service should yield something like the following output in your terminal:

$ python3 main.py
Starting peer aQVwz9aRMRypGwBkaxGRSdQs80c=
Starting peer bPyWPyswqXMhbW8+0RS6xUtNJrs=

You should see two messages with 28 character base64 encoded strings. These are the identifiers of the two peers
we launched using the service. You can use these identifiers for your reference when playing around with send-
ing attestation requests. In your experiment you will create unique keys and therefore see other identifiers than the
aQVwz9aRMRypGwBkaxGRSdQs80c= and bPyWPyswqXMhbW8+0RS6xUtNJrs= shown above.

6.7.2 Functionality flows

Generally speaking there are two (happy) flows when using the IPv8 attestation framework. The first flow is the en-
rollment of an attribute and the second flow is the verification of an existing/enrolled attribute. Both flows consist of a
distinct set of requests (and responses) which we will explain in detail in the remainder of this document.

To test a flow, we start the two peers we created previously. If you did not remove the key files (*.pem) after the first
run, you will start the same two peers as in the last run. In our case the output of starting the service is as follows:

$ python main.py
Starting peer aQVwz9aRMRypGwBkaxGRSdQs80c=
Starting peer bPyWPyswqXMhbW8+0RS6xUtNJrs=

In our case this means that peer aQVwz9aRMRypGwBkaxGRSdQs80c= exposes its REST API at http:/
/localhost:14411/ and peer bPyWPyswqXMhbW8+0RS6xUtNJrs= exposes its REST API at http://
localhost:14412/. If you did not modify the ports in the initial scripts, you will have two different peer
identifiers listening at the same ports. For convenience we will refer to our first peer as Peer 1 and our second peer as
Peer 2.

As a last note, beware of URL encoding: when passing these identifiers they need to be properly formatted (+ and =
are illegal characters). In our case we need to use the following formatting of the peer identifiers in URLs (for Peer 1
and Peer 2 respectively):

TGliTmFDTFBLOpyBsled71NjFOZfF3L%2Bw0sdAvcM3xI1nM%2Fik6NbRzxmwgFBJRZdQ
→˓%2Bh2CURQlwxtFxe33U7oldJtK%2BE1fTk2rOo%3D
TGliTmFDTFBLOg%2Frrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv%2BhSjbssLYmps
→˓%2Bjlh9rb250LYD7gEH20%3D

If you are using Python, you can make these identifiers URL-safe by calling urllib.parse.quote(identifier,
safe='').

6.7. Using the IPv8 attestation service 37

IPv8 Documentation, Release 2.13.0

Enrollment/Attestation flow

To enroll, or attest, an attribute we will go through the following steps:

1. Sanity checks: Peer 1 and Peer 2 can see each other and have no existing attributes.

2. Peer 1 requests attestation of an attribute by Peer 2.

3. Peer 2 attests to the requested attribute.

4. Peer 1 checks its attributes to confirm successful attestation.

0. SANITY CHECK - First we check if both peers can see each other using their respective interfaces.

$ curl http://localhost:14411/identity/pseudonym1/peers
{"peers": ["TGliTmFDTFBLOg/
→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=
→˓"]}
$ curl http://localhost:14412/identity/pseudonym2/peers
{"peers": ["TGliTmFDTFBLOpyBsled71NjFOZfF3L+w0sdAvcM3xI1nM/
→˓ik6NbRzxmwgFBJRZdQ+h2CURQlwxtFxe33U7oldJtK+E1fTk2rOo="]}

Pseudonyms are lazy-loaded and/or created on demand, it may take a few seconds for the pseudonyms to discover each
other. Then we confirm that neither peer has existing attributes.

$ curl http://localhost:14411/identity/pseudonym1/credentials
{"names": []}
$ curl http://localhost:14412/identity/pseudonym2/credentials
{"names": []}

1. ATTESTATION REQUEST - Peer 1 will now ask Peer 2 to attest to an attribute.

$ curl -X PUT -H "Content-Type: application/json" -d '{"name":"my_attribute","schema":
→˓"id_metadata","metadata":{}}' "http://localhost:14411/identity/pseudonym1/request/
→˓TGliTmFDTFBLOg%2Frrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv%2BhSjbssLYmps
→˓%2Bjlh9rb250LYD7gEH20%3D"
{"success": true}

2. ATTESTATION - Peer 2 finds an outstanding request for attestation. Peer 2 will now attest to some attribute value
of Peer 1 (dmFsdWU= is the string value in base64 encoding).

$ curl http://localhost:14412/identity/pseudonym2/outstanding/attestations
{"requests": [{"peer": "TGliTmFDTFBLOpyBsled71NjFOZfF3L+w0sdAvcM3xI1nM/
→˓ik6NbRzxmwgFBJRZdQ+h2CURQlwxtFxe33U7oldJtK+E1fTk2rOo=", "attribute_name": "my_attribute
→˓", "metadata": "{}"}]}
$ curl -X PUT -H "Content-Type: application/json" -d '{"name":"my_attribute","value":
→˓"dmFsdWU="}' "http://localhost:14412/identity/pseudonym2/attest/
→˓TGliTmFDTFBLOpyBsled71NjFOZfF3L%2Bw0sdAvcM3xI1nM%2Fik6NbRzxmwgFBJRZdQ
→˓%2Bh2CURQlwxtFxe33U7oldJtK%2BE1fTk2rOo%3D"
{"success": true}

3. CHECK - Peer 1 confirms that he now has an attested attribute.

$ curl http://localhost:14411/identity/pseudonym1/credentials
{"names": [{"name": "my_attribute", "hash": "mtMiZioWORNgV+GeGACsY+rD+lI=", "metadata": {
→˓"name": "my_attribute", "schema": "id_metadata", "date": 1593171171.876003}, "attesters
→˓": ["TGliTmFDTFBLOg/

(continues on next page)

38 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=
→˓"]}]}
$ curl http://localhost:14412/identity/pseudonym2/credentials
{"names": []}

Attribute verification flow

To verify an attribute we will go through the following steps:

1. Sanity checks: Peer 1 and Peer 2 can see each other and Peer 1 has an existing attribute.

2. Peer 2 requests verification of an attribute of Peer 1.

3. Peer 1 allows verification of its attribute.

4. Peer 2 checks the verification output for the requested verification.

0. SANITY CHECK - First we check if both peers can see each other using their respective interfaces.

$ curl http://localhost:14411/identity/pseudonym1/peers
{"peers": ["TGliTmFDTFBLOg/
→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=
→˓"]}
$ curl http://localhost:14412/identity/pseudonym2/peers
{"peers": ["TGliTmFDTFBLOpyBsled71NjFOZfF3L+w0sdAvcM3xI1nM/
→˓ik6NbRzxmwgFBJRZdQ+h2CURQlwxtFxe33U7oldJtK+E1fTk2rOo="]}

Then we confirm that Peer 1 has the existing attribute (my_attribute from the last step).

$ curl http://localhost:14411/identity/pseudonym1/credentials
{"names": [{"name": "my_attribute", "hash": "mtMiZioWORNgV+GeGACsY+rD+lI=", "metadata": {
→˓"name": "my_attribute", "schema": "id_metadata", "date": 1593171171.876003}, "attesters
→˓": ["TGliTmFDTFBLOg/
→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=
→˓"]}]}
$ curl http://localhost:14412/identity/pseudonym2/credentials
{"names": []}

1. VERIFICATION REQUEST - Peer 2 will now ask Peer 1 to verify an attribute.

$ curl -X PUT -H "Content-Type: application/json" -d '{"hash":
→˓"mtMiZioWORNgV+GeGACsY+rD+lI=","value":"dmFsdWU=","schema":"id_metadata"}' "http://
→˓localhost:14412/identity/pseudonym2/verify/TGliTmFDTFBLOpyBsled71NjFOZfF3L
→˓%2Bw0sdAvcM3xI1nM%2Fik6NbRzxmwgFBJRZdQ%2Bh2CURQlwxtFxe33U7oldJtK%2BE1fTk2rOo%3D"
{"success": true}

2. VERIFICATION - Peer 1 finds an outstanding request for verification.

$ curl http://localhost:14411/identity/pseudonym1/outstanding/verifications
{"requests": [{"peer": "TGliTmFDTFBLOg/
→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=",
→˓ "attribute_name": "my_attribute"}
$ curl -X PUT -H "Content-Type: application/json" -d '{"name":"my_attribute"}' "http://
→˓localhost:14411/identity/pseudonym1/allow/TGliTmFDTFBLOg

(continues on next page)

6.7. Using the IPv8 attestation service 39

IPv8 Documentation, Release 2.13.0

(continued from previous page)

→˓%2Frrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv%2BhSjbssLYmps
→˓%2Bjlh9rb250LYD7gEH20%3D"
{"success": true}

3. CHECK - Peer 2 checks the output of the verification process.

$ curl http://localhost:14412/identity/pseudonym2/verifications
{"outputs": [{"hash": "mtMiZioWORNgV+GeGACsY+rD+lI=", "reference": "dmFsdWU=", "match":␣
→˓0.9999847412109375}]}

6.8 Peer discovery basics

All IPv8 overlays have 4 messages in common: introduction-request, introduction-response, puncture-request, and
puncture. These 4 messages are used for peer discovery and NAT puncturing.

The peer discovery protocol runs the following steps in a loop until enough peers have been found:

1. Peer A sends an introduction-request to peer B. Peer B is chosen from an existing pool of neighboring peers.

2. Peer B sends an introduction-response to peer A containing the address of peer C.

3. Peer B sends a puncture-request to peer C containing the address of peer A.

4. Peer C sends a puncture to peer A, puncturing its NAT.

When a peer doesn’t yet have a list of neighboring peers, it will select a bootstrap server for peer B. IPv8 bootstrap
servers implement the same peer discovery protocol as ordinary peers, except that they respond to introduction-requests
for any overlay. Once a peer sends an introduction-request to a bootstrap server, the bootstrap server will keep track of
the sender and the overlay within which the introduction-request was sent. When sending introduction-responses, the
bootstrap server will pick a peer from this list as an introduction candidate (peer C in the image above). Periodically,
the bootstrap server will send an introduction-request for a random peer in the list. If the peer doesn’t respond with an
introduction-response, the bootstrap server will assume that the unresponsive peer is no longer interested in new peers
and update its list accordingly.

40 Chapter 6. Table of contents

./resources/ipv8_peer_discovery.png

IPv8 Documentation, Release 2.13.0

6.9 Community Best Practices

When working with a small Community class you can get away with putting all of your code into the same file. However,
as your codebase grows this simple approach becomes unmaintainable (most importantly it becomes hard to test). More
formally, whereas you should always start with the KISS principle (keep it simple, stupid) we’ll show how you can
organize your Community as it grows larger (using the SOLID design principles).

Pledge: One of the founding principles of IPv8 is to allow you to program in any style you like. IPv8 should never
force your code to fit any particular architecture. This is what separates IPv8 from its predecessor Dispersy.

6.9.1 SOLID by example

The first letter of the SOLID principles stands for the single-responsibility principle. We’ll now discuss what this means
for your Community.

Any Community is in charge of sending and receiving messages between Peer instances (identities managed by the
Network class). A direct implication of this is that any code in your Community which is not concerned with handling
or sending messages should be extracted. This may be hard to spot, so let’s discuss a practical example:

class MyCommunity(Community):

def __init__(self, settings: CommunitySettings):
super().__init__(settings)
... details omitted ...
self.last_value = 0
self.total_value = 0

@lazy_wrapper(MyPayload)
def on_my_payload(self, peer, payload):

self.last_value = payload.value
self.total_value += payload.value
self.ez_send(peer, MyResponsePayload(self.total_value))

Is there anything wrong with this code? No, and you should always strive to keep your code as simple as possible.
However, this style may become unmanageable if your Community becomes too big. In this particular example, we see
that the MyCommunity is storing a state of incoming payload.value, which is not its responsibility. This example
doesn’t follow the SOLID principles and next we’ll apply other principles of SOLID to fix it.

Our previous example completely captures and manages the state of payload.value. This makes MyCommunity a
god-class, arguably the worst software engineering anti-pattern. Let’s incrementally improve our example. First we’ll
delegate the incoming information to a specific interface (the I of interface segregation in SOLID). The following turns
MyCommunity into a mediator:

class MyCommunity(Community):

def __init__(self, settings: CommunitySettings):
super().__init__(settings)
... details omitted ...
self.value_manager = ValueManager()

@lazy_wrapper(MyPayload)
def on_my_payload(self, peer, payload):

self.value_manager.set_last_value(payload.value)
self.value_manager.add_to_total(payload.value)

(continues on next page)

6.9. Community Best Practices 41

IPv8 Documentation, Release 2.13.0

(continued from previous page)

return_value = self.value_manager.total_value
self.ez_send(peer, MyResponsePayload(return_value))

Has this improved our code? Yes. We can now test all of the methods in ValueManager without having to send
messages through the MyCommunity. Especially if your message handlers are very complex, this can save you a lot of
time. This also improves the readability of your code: the ValueManager clearly takes care of all value-related state
updates. As the responsibility of value-related updates now lies with the ValueManager, our MyCommunity now again
has a single responsibility.

Is our previous improvement perfect? No. We have upgraded our MyCommunity from a god-class pattern to a mediator
pattern. Our class is still performing low-level operations on the ValueManager, violating the dependency inversion
principle (the D in SOLID). Dependency inversion consists of both keeping low-level details of dependencies out of a
higher-level class and making generic interfaces. You can see that the MyCommunity has to call set_last_value and
add_to_total, which are low-level operations. Let’s fix that:

class MyCommunity(Community):

def __init__(self, settings: CommunitySettings):
super().__init__(settings)
... details omitted ...
self.value_manager = ValueManager()

@lazy_wrapper(MyPayload)
def on_my_payload(self, peer, payload):

return_value = self.value_manager.process(payload.value)
self.ez_send(peer, MyResponsePayload(return_value))

Finally perfection. Our MyCommunity no longer has any knowledge of how a payload.value is processed.
Our ValueManager can internally process a value, without knowing about the payload. The return value of
ValueManager is then given back to the MyCommunity to send a new message, which is its responsibility. We can
still test our ValueManager independently, but now also provide our MyCommunity with a mocked ValueManager to
more easily test it.

Some final notes:

• Don’t forget that you have asyncio at your disposal! You can, for example, give your managers an asyncio.
Future for you to await.

• You should be wary when applying the Inversion of Control principle to allow your managers to directly send
messages from your Community. This may violate the dependency inversion principle through your inverted
control.

6.9.2 Community initialization

To run IPv8 as a service (using ipv8_service.py), you need to be able to launch your overlay from user settings
(i.e., a configuration dictionary of strings and ints). This conflicts with a dependency injection pattern. A compromise,
which is a recurring successful pattern in IPv8, is “create from configuration if not explicitly supplied”. In other words,
check if a dependency is given to our constructor and create it from the supplied settings if it is not. This is an example:

class MyCommunitySettings(CommunitySettings):
value_manager: ValueManager | None = None

class MyCommunity(Community):
(continues on next page)

42 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

settings_class = MyCommunitySettings

def __init__(self, settings: MyCommunitySettings) -> None:
super().__init__(settings)
Create-if-Missing Pattern
self.value_manager = settings.value_manager or ValueManager()

Note that to pass settings to your overlay it is often better to supply a settings object instead of passing every configu-
ration parameter separately (the latter is known as a Data Clump code smell). Passing your settings as an object avoids
passing too many arguments to your Community (Pylint R0913).

6.10 IPv8 configuration options

The ipv8/configuration.py contains the main IPv8 configuration options. IPv8 will read a dictionary that
conforms to the configuration format to determine what services to start and which keys to use. By invoking
get_default_configuration(), you can get a dictionary copy of the default settings for your custom IPv8 con-
figuration.

Table 2: Configuration keys

key default description
interfaces The interfaces to bind to (UDPIPv4 or UDPIPv6) using an IP ad-

dress and port. If the specified port is blocked, IPv8 will attempt
the next free port (up to 10,000 ports over the specified port).

keys Specify a list of keys, by alias, for IPv8 to use. The curve should
be picked from those available in the ECCrypto class. IPv8 will
generate a new key if the key file does not exist.

logger The logger intialization arguments, also see the default Python
logger facilities.

walker_interval 0.5 The time interval between IPv8 updates. Each update will trig-
ger all registered strategies to update, mostly this concerns peer
discovery.

overlays [...] The list of overlay definitions and their respective walking strate-
gies. See the overlay definition section for further details.

6.10. IPv8 configuration options 43

IPv8 Documentation, Release 2.13.0

6.10.1 Overlay Specifications

Each of the overlay specifications is a dictionary following the following standard:

Table 3: Network overlay definitions

key description
class The overlay class to load. Do note that any external overlay definitions will have to be reg-

istered in IPv8, see also the overlay creation tutorial.
key The alias of the key to use for the particular overlay.
walkers The walker to employ.
bootstrappers The bootstrappers to use.
initialize The additional arguments to pass to the constructor of the overlay.
on_start A list of tuples containing method names and their arguments. These methods are invoked

when IPv8 has started.

By default, the RandomWalk and EdgeWalk strategies are known to IPv8. Respectively these will take care of perform-
ing random walks and random walks with reset probability for peer discovery. Each overlay may also specify further
custom strategies. Check out the the bootstrapping documentation for more information on configuring bootstrappers
per overlay.

By default, IPv8 loads the following overlays:

• DiscoveryCommunity

• HiddenTunnelCommunity

• DHTDiscoveryCommunity

6.10.2 Key Specifications

Each of the key specifications is a dictionary following the following standard:

Table 4: Key definitions

key description
alias The name by which this key can be referenced in overlay configuration.
file The optional file to store the key in.
generation The curve to use if this key needs to be generated.
bin The b64 encoded raw key material to use.

It is always required to specify a key alias. If you specify a file IPv8 will attempt to load your key from this file.
Only if the file does not exist, will the generation or bin be referenced. If a file has been specified, once a key has
been loaded it will be written to the specified file. If you specify a bin, IPv8 will prefer to use this raw key material
over generating a new key from the key curve specified by generation. You must provide IPv8 with at least one of
the key source material options (a file, a bin or a generation) to have a valid key configuration.

44 Chapter 6. Table of contents

../reference/bootstrapping.html

IPv8 Documentation, Release 2.13.0

6.11 IPv8 bootstrapping

Peers discover each other through other Peers, as specified in the the Peer discovery basics. We call this type of Peer
discovery introduction. However, you cannot be introduced to a new Peer if you don’t know anyone to introduce you
in the first place. This document discusses how IPv8 provides you your first contact.

6.11.1 Bootstrap servers (rendezvous nodes)

To provide you an initial point of introduction, IPv8 mainly uses bootstrap servers (also known as rendezvous nodes).
You can connect to these servers to attempt to find other Peers for your overlay. A bootstrap server will then respond
to your request for Peers with Peers that have contacted it for the same overlay. However, these bootstrap servers only
introduce you to other Peers, they do not (and can not) actually join any overlay. A bootstrap server also has no way of
knowing what your overlay does, it only knows its 20-byte identifier.

By default, IPv8 comes supplied with a handful of bootstrap IP addresses and bootstrap DNS addresses. You can
freely extend or replace the default servers with your own. To tell IPv8 what bootstrap IP addresses and bootstrap DNS
addresses it should connect to, you can use the DispersyBootstrapper class.

Using bootstrap servers

To have IPv8 load a bootstrapper for your overlay, you can simply add it to your ConfigBuilder.add_overlay()
step. This is the easiest way to load a bootstrapper. For most intents and purposes you can simply use
default_bootstrap_defs provided by ipv8.configuration (see the overlay tutorial). However, you can also
completely change the bootstrap servers you use. For example, this code sets two bootstrap addresses (the IP address
1.2.3.4 with port 5 and the DNS address tribler.org with port 5):

ConfigBuilder().add_overlay("MyCommunity",
"my id",
[WalkerDefinition(Strategy.RandomWalk, 42, {

→˓'timeout': 3.0})],
[BootstrapperDefinition(Bootstrapper.

→˓DispersyBootstrapper,
{'ip_addresses': [('1.2.3.4

→˓', 5)],
'dns_addresses': [(

→˓'tribler.org', 5)]})],
{},
[])

If you are using the loader instead of configuration you can load a bootstrapper into your launcher as follows:

@overlay('my_module.some_submodule', 'MyCommunity')
@walk_strategy(RandomWalk)
@bootstrapper(DispersyBootstrapper, kw_args={'ip_addresses': [('1.2.3.4', 5)],
→˓'dns_addresses': [('tribler.org', 5)]})
class MyLauncher(CommunityLauncher):

pass

If you are using neither the loader nor the configuration, you can manually add a DispersyBootstrapper in-
stance to your overlay’s bootstrappers field. However, you should do so before the overlay starts discovering Peers
(i.e., before IPv8.start() is invoked).

6.11. IPv8 bootstrapping 45

../reference/peer_discovery.html
../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

Running a bootstrap server

To run your own bootstrap server simply call scripts/tracker_plugin.py. For example, this code will attempt to
bind to port 12345:

python tracker_plugin.py --listen_port=12345

You are responsible to configure your port forwarding over your hardware in such a way that the specified listen port is
connectable.

6.11.2 UDP broadcasts

Next to bootstrap servers, IPv8 also allows serverless Peer discovery for LANs. This is done using UDP broadcast
sockets. These broadcasts consist of sending an IPv8 probe UDP packet to all possible ports of the IPv4 broadcast
address. You should consider this option if you are having trouble connecting to other Peers in your home network.
This method is usually very effective for simple home networks. However, complex home (or work) network setups
may still fail to discover these local Peers.

Using UDP broadcasts

Loading UDP broadcast bootstrapping for your overlay functions much the same as using bootstrap servers. Again, you
can simply add it to your ConfigBuilder.add_overlay() step:

ConfigBuilder().add_overlay("MyCommunity",
"my id",
[WalkerDefinition(Strategy.RandomWalk, 42, {

→˓'timeout': 3.0})],
[BootstrapperDefinition(Bootstrapper.

→˓UDPBroadcastBootstrapper, {})],
{},
[])

If you are using the loader instead of configuration you can load a bootstrapper into your launcher as follows:

@overlay('my_module.some_submodule', 'MyCommunity')
@walk_strategy(RandomWalk)
@bootstrapper(UDPBroadcastBootstrapper)
class MyLauncher(CommunityLauncher):

pass

If you are using neither the loader nor the configuration, you can manually add a UDPBroadcastBootstrapper
instance to your overlay’s bootstrappers field.

46 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

6.11.3 Making your own Bootstrapper

As you may have noticed, loading a DispersyBootstrapper and a UDPBroadcastBootstrapper is highly similar.
This is because they both inherit from the Bootstrapper interface. You can fulfill the same interface to provide your
own bootstrapping mechanism. To use custom bootstrappers you will either have to use the loader or manual loading
methods.

6.12 Key generation options

The ipv8/keyvault/crypto.py file contains the main public key cryptography class for IPv8: ECCrypto. It allows
you to generate the following keys:

Table 5: Available curves for key generation

name curve backend
very-low SECT163K1 M2Crypto
low SECT233K1 M2Crypto
medium SECT409K1 M2Crypto
high SECT571R1 M2Crypto
curve25519 EC25519 Libsodium

The M2Crypto backend keys do not actually use the M2Crypto backend, but use a python-cryptography backend.
These M2Crypto curves are supported for backwards compatibility with the Dispersy project. For new applications,
only the curve25519 should be used.

Generally you will create either a new ECCrypto instance (if you wish to modify or extend the base cryptography) or
use the default default_eccrypto instance. The following methods are most commonly used:

• generate_key(): generate a new key from a given curve name.

• key_to_bin(): serialize a given key into a string.

• key_from_private_bin(): load a private key from a string.

• key_from_public_bin(): load a public key from a string.

The following methods will usually be handled by IPv8 internally:

• key_to_hash(): convert a key into a sha1 string (usually accessed through Peer.mid).

• create_signature(): create a signature for some data (usually handled by the Community class).

• is_valid_signature(): checks a signature for validity (usually handled by the Community class).

6.13 Message serialization

IPv8 gives you as much control as possible over the messages you send over the Internet. The Overlay (or Community)
class lets you send arbitrary strings over the (UDP) endpoint. However efficient this may be, having non-standardized
string contruction for each message of your overlay can distract from the overal overlay design. This is the age-old
dichotomy of maintainable versus performant code.

The basic class for serializing objects from and to strings/network packets is the Serializer (ipv8/messaging/
serialization.py). Though the Serializer is extensible, you will mostly only need the default serializer
default_serializer. You can use the Serializer with classes of the following types:

6.12. Key generation options 47

IPv8 Documentation, Release 2.13.0

Table 6: Serializable classes

class path description
Serializable ipv8/messaging/serialization.pyBase class for all things serializable. Should support

the instance method to_pack_list() and the class method
from_unpack_list().

Payload ipv8/messaging/payload.py Extension of the Serializable class with logic for pretty
printing.

VariablePayload ipv8/messaging/lazy_payload.pyLess verbose way to specify Payloads, at the cost of per-
formance.

dataclass ipv8/messaging/payload_dataclass.pyUse dataclasses to send messages, at the cost of control
and performance.

Other than the dataclass, each of these serializable classes specifies a list of primitive data types it will serialize to
and from. The primitive data types are specified in the data types Section. Each serializable class has to specify the
following class members (dataclass does this automatically):

Table 7: Serializable class members

member description
format_list A list containing valid data type primitive names.
names Only for VariablePayload classes, the instance fields to bind the data types

to.

As an example, we will now define four completely wire-format compatible messages using the four classes. Each of
the messages will serialize to a (four byte) unsigned integer followed by an (two byte) unsigned short. If the dataclass
had used normal int types, these would have been two signed 8-byte integers instead. Each instance will have two
fields: field1 and field2 corresponding to the integer and short.

class MySerializable(Serializable):
format_list = ['I', 'H']

def __init__(self, field1: int, field2: int) -> None:
self.field1 = field1
self.field2 = field2

def to_pack_list(self) -> list[tuple]:
return [('I', self.field1),

('H', self.field2)]

@classmethod
def from_unpack_list(cls: type[MySerializable],

field1: int, field2: int) -> MySerializable:
return cls(field1, field2)

class MyPayload(Payload):
format_list = ['I', 'H']

def __init__(self, field1: int, field2: int) -> None:
self.field1 = field1
self.field2 = field2

(continues on next page)

48 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

def to_pack_list(self) -> list[tuple]:
return [('I', self.field1),

('H', self.field2)]

@classmethod
def from_unpack_list(cls: type[MyPayload],

field1: int, field2: int) -> MyPayload:
return cls(field1, field2)

class MyVariablePayload(VariablePayload):
format_list = ['I', 'H']
names = ['field1', 'field2']

@vp_compile
class MyCVariablePayload(VariablePayload):

format_list = ['I', 'H']
names = ['field1', 'field2']

I = type_from_format('I')
H = type_from_format('H')

@dataclass
class MyDataclassPayload:

field1: I
field2: H

To show some of the differences, let’s check out the output of the following script using these definitions:

serializable1 = MySerializable(1, 2)
serializable2 = MyPayload(1, 2)
serializable3 = MyVariablePayload(1, 2)
serializable4 = MyCVariablePayload(1, 2)
serializable5 = MyDataclassPayload(1, 2)

print("As string:")
print(serializable1)
print(serializable2)
print(serializable3)
print(serializable4)
print(serializable5)

As string:
<__main__.MySerializable object at 0x7f732a23c1f0>
MyPayload
| field1: 1
| field2: 2
MyVariablePayload

(continues on next page)

6.13. Message serialization 49

IPv8 Documentation, Release 2.13.0

(continued from previous page)

| field1: 1
| field2: 2
MyCVariablePayload
| field1: 1
| field2: 2
MyDataclassPayload
| field1: 1
| field2: 2

6.13.1 Datatypes

Next to the unsigned integer and unsigned short data types, the default Serializer has many more data types to of-
fer. The following table lists all data types available by default, all values are big-endian and most follow the de-
fault Python struct format. A Serializer can be extended with additional data types by calling serializer.
add_packer(name, packer), where packer represent the object responsible for (un)packing the data type. The
most commonly used packer is DefaultStruct, which can be used with arbitrary struct formats (for example
serializer.add_packer("I", DefaultStruct(">I"))).

Table 8: Available data types

member bytes unserialized type
? 1 boolean
B 1 unsigned byte
BBH 4 [unsigned byte, unsigned byte, unsigned short]
BH 3 [unsigned byte, unsigned short]
c 1 signed byte
f 4 signed float
d 8 signed double
H 2 unsigned short
HH 4 [unsigned short, unsigned short]
I 4 unsigned integer
l 4 signed long
LL 8 [unsigned long, unsigned long]
q 8 signed long long
Q 8 unsigned long long
QH 10 [unsigned long long, unsigned short]
QL 12 [unsigned long long, unsigned long]
QQHHBH 23 [unsigned long long, unsigned long long, unsigned short, unsigned short,

unsigned byte, unsigned long]
ccB 3 [signed byte, signed byte, unsigned byte]
4SH 6 [str (length 4), unsigned short]
20s 20 str (length 20)
32s 20 str (length 32)
64s 20 str (length 64)
74s 20 str (length 74)
c20s 21 [unsigned byte, str (length 20)]
bits 1 [bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, bit 7]
ipv4 6 [str (length 7-15), unsigned short]
raw ? str (length ?)
varlenBx2 1 + ? * 2 [str (length = 2), ...] (length < 256)

continues on next page

50 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

Table 8 – continued from previous page
member bytes unserialized type
varlenH 2 + ? str (length ? < 65356)
varlenHutf8 2 + ? str (encoded length ? < 65356)
varlenHx20 2 + ? * 20 [str (length = 20), ...] (length < 65356)
varlenH-list 1 + ? * (2 + ??) [str (length < 65356)] (length < 256)
varlenI 4 + ? str (length < 4294967295)
doublevarlenH 2 + ? str (length ? < 65356)
payload 2 + ? Serializable
payload-list ? [Serializable]
arrayH-? 2 + ? * 1 [bool]
arrayH-q 2 + ? * 8 [int]
arrayH-d 2 + ? * 8 [float]

Some of these data types represent common usage of serializable classes:

Table 9: Common data types

member description
4SH (IP, port) tuples
20s SHA-1 hashes
32s libnacl signatures
64s libnacl public keys
74s libnacl public keys with prefix

Special instances are the raw and payload data types.

• raw: can only be used as the last element in a format list as it will consume the remainder of the input string
(avoid if possible).

• payload: will nest another Serializable instance into this instance. When used, the format_list should
specify the class of the nested Serializable and the to_pack_list() output should give a tuple of
("payload", the_nested_instance). The VariablePayload automatically infers the to_pack_list()
for you. See the NestedPayload class definition for more info.

6.13.2 The ez_pack family for Community classes

All subclasses of the EZPackOverlay class (most commonly subclasses of the Community class) have a short-cut
for serializing messages belonging to the particular overlay. This standardizes the prefix and message ids of overlays.
Concretely, it uses the first 23 bytes of each packet to handle versioning and routing (demultiplexing) packets to the
correct overlay.

The ezr_pack method of EZPackOverlay subclasses takes an (integer) message number and a variable amount
of Serializable instances. Optionally you can choose to not have the message signed (supply the sig=True or
sig=False keyword argument for respectively a signature or no signature over the packet).

The lazy_wrapper and lazy_wrapper_unsigned decorators can then respectively be used for unserializing pay-
loads which are signed or not signed. Simply supply the payload classes you wish to unserialize to, to the decorator.

As some internal messages and deprecated messages use some of the message range, you have the messages identifiers
from 0 through 234 available for your custom message definitions. Once you register the message handler and have the
appropriate decorator on the specified handler method your overlay can communicate with the Internet. In practice,
given a COMMUNITY_ID and the payload definitions MyMessagePayload1 and MyMessagePayload2, this will look
something like this example (see the overlay tutorial for a complete runnable example):

6.13. Message serialization 51

../basics/overlay_tutorial.html

IPv8 Documentation, Release 2.13.0

class MyCommunity(Community):
community_id = COMMUNITY_ID

def __init__(self, settings: CommunitySettings) -> None:
super().__init__(settings)

self.add_message_handler(1, self.on_message)

@lazy_wrapper(MyMessagePayload1, MyMessagePayload2)
def on_message(self, peer: Peer, payload1: MyMessagePayload1,

payload2: MyMessagePayload2) -> None:
print("Got a message from:", peer)
print("The message includes the first payload:\n", payload1)
print("The message includes the second payload:\n", payload2)

def send_message(self, peer: Peer) -> None:
packet = self.ezr_pack(1, MyMessagePayload1(), MyMessagePayload2())

It is recommended (but not obligatory) to have single payload messages store the message identifier inside the Payload.
msg_id field, as this improves readability:

self.add_message_handler(MyMessage1, self.on_message1)
self.add_message_handler(MyMessage2, self.on_message2)
self.ez_send(peer, MyMessage1(42))
self.ez_send(peer, MyMessage2(7))

If you are using the @dataclass wrapper you can specify the message identifier through an argument instead. For
example, @dataclass(msg_id=42) would set the message identifier to 42.

Of course, IPv8 also ships with various Community subclasses of its own, if you need inspiration.

6.13.3 Using external serialization options

IPv8 is compatible with pretty much all third-party message serialization packages. However, before hooking one of
these packages into IPv8 you may want to ask yourself whether you have fallen victim to marketing hype. After all,
XML is the one unifying standard we will never switch away from, right? Oh wait, no, it’s JSON. My bad, it’s Protobuf.
Or was it ASN.1? You get the point. In this world, only the core IPv8 serialization format remains constant.

There are three main ways to hook in external serialization: per message, per Serializer and per Community. The three
methods can be freely mixed.

Custom serialization per message

If you only want to use custom seralization for (part of) a single overlay message, you can use VariablePayload
field modification (this also works for dataclass payloads). This method involves implementing the methods
fix_pack_<your field name> and fix_unpack_<your field name> for the fields of your message that use cus-
tom serialization. Check out the following example:

@vp_compile
class VPMessageKeepDict(VariablePayload):

msg_id = 1
format_list = ['varlenH']

(continues on next page)

52 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

names = ["dictionary"]

def fix_pack_dictionary(self, the_dictionary: dict) -> bytes:
return json.dumps(the_dictionary).encode()

@classmethod
def fix_unpack_dictionary(cls: type[VPMessageKeepDict],

serialized_dictionary: bytes) -> dict:
return json.loads(serialized_dictionary.decode())

@dataclass(msg_id=2)
class DCMessageKeepDict:

dictionary: str

def fix_pack_dictionary(self, the_dictionary: dict) -> str:
return json.dumps(the_dictionary)

@classmethod
def fix_unpack_dictionary(cls: type[DCMessageKeepDict],

serialized_dictionary: str) -> dict:
return json.loads(serialized_dictionary)

In both classes we create a message with a single field dictionary. To pack this field, we use json.dumps() to
create a string representation of the dictionary. When loading a message, json.loads() is used to create a dictionary
from the serialized data. Instead of json you could also use any serialization of your liking.

Using the same transformations for all fields makes your payloads very lengthy. In this case, you may want to look into
specifying a custom serialization format.

Custom serialization formats

It is possible to specify new formats by adding packing formats to a Serializer instance. You can easily do so by
overwriting your Community.get_serializer() method. This Serializer is sandboxed per Community instance,
so you don’t have to worry about breaking other instances. Check out the following example and note that the message
is now much smaller at the expense of having to define a custom (complicated) packing format.

@vp_compile
class Message(VariablePayload):

msg_id = 1
format_list = ['json', 'json', 'json', 'json']
names = ["d1", "d2", "d3", "d4"]

class PackerJSON(Packer):

def pack(self, data: Any) -> bytes:
packed = json.dumps(data).encode()
size = struct.pack(">H", len(packed))
return size + packed

def unpack(self, data: bytes, offset: int,
(continues on next page)

6.13. Message serialization 53

IPv8 Documentation, Release 2.13.0

(continued from previous page)

unpack_list: list, *args: Any) -> int:
size, = struct.unpack_from(">H", data, offset)

json_data_start = offset + 2
json_data_end = json_data_start + size

serialized = data[json_data_start:json_data_end]
unpack_list.append(json.loads(serialized))

return json_data_end

class MyCommunity(Community):

def get_serializer(self) -> Serializer:
serializer = super().get_serializer()
serializer.add_packer('json', PackerJSON())
return serializer

The line serializer.add_packer('json', PackerJSON()) adds the new format json that is used in Message.
In fact, any further message added to this Community can now use the json format. However, you may also note some
additional complexity in the PackerJSON class.

Our custom packer PackerJSON implements two required methods: pack() and unpack(). The former serializes
data using custom serialization (json.dumps() in this case). We use a big-endian unsigned short (">H") to determine
the length of the serialized JSON data. The unpack() method creates JSON objects from the serialized data, returning
the new offset in the data stream and adding the object ot the unpack_list list.

Custom Community data handling

It is possible to circumvent IPv8 message formats altogether. In its most extreme form, you can overwrite
Community.on_packet(packet) to inspect all raw data sent to your Community instance. The packet is a tuple
of (source_address, data). You can write raw data back to an address using self.endpoint.send(address,
data).

If you want to mix with other messages, you should use the message byte. The following example shows how to use
JSON serialization without any IPv8 serialization. Note that we need to do our own signature checks now.

class MyCommunity(Community):
community_id = os.urandom(20)

def __init__(self, settings: CommunitySettings) -> None:
super().__init__(settings)
self.event = None
self.add_message_handler(1, self.on_message)

def send_message(self, peer: Peer) -> None:
message = json.dumps({"key": "value", "key2": "value2"})
public_key = to_hex(self.my_peer.public_key.key_to_bin())
signature = to_hex(self.my_peer.key.signature(message.encode()))

signed_message = json.dumps({"message": message,
(continues on next page)

54 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

(continued from previous page)

"public_key": public_key,
"signature": signature}).encode()

self.endpoint.send(peer.address,
self.get_prefix() + b'\x01' + signed_message)

def on_message(self, source_address: Address, data: bytes) -> None:
Account for 1 byte message id
header_length = len(self.get_prefix()) + 1
Strip the IPv8 multiplexing data
received = json.loads(data[header_length:])

public_key = self.crypto.key_from_public_bin(unhexlify(received["public_key"]))
valid = self.crypto.is_valid_signature(public_key,

received["message"].encode(),
unhexlify(received["signature"]))

self.logger.info("Received message %s from %s, the signature is %s!",
received['message'], source_address, valid)

6.13.4 Nested Payloads

It is possible to put a Payload inside another Payload. We call these nested payloads. You can specify them by using
the "payload" datatype and setting the Payload class in the format list. For a VariablePayload this looks like the
following example.

class A(VariablePayload):
format_list = ['I', 'H']
names = ["foo", "bar"]

class B(VariablePayload):
format_list = [A, 'H'] # Note that we pass the class A
names = ["a", "baz"]

For dataclass payloads this nesting is supported by simply specifying nested classes as follows.

@dataclass(msg_id=1)
class Message:

@dataclass
class Item:

foo: int
bar: int

item: Item
items: [Item] # Yes, you can even make this a list!
baz: int

6.13. Message serialization 55

IPv8 Documentation, Release 2.13.0

6.14 Advanced attestation service usage

This document assumes you have a basic understanding of identification flows in IPv8, as documented in the overlay
tutorial. This document addresses the following three topics:

• Enabling anonymization.

• Setting a REST API access token.

• Setting a rendezvous token.

Each of these features can be enabled independently, but should all be enabled when dealing with actual identity data.

6.14.1 Enabling anonymization

Purpose: disallow device fingerprinting.

In the basic identity tutorial we created the following configuration:

for peer_id in [1, 2]:
configuration = get_default_configuration()
configuration['keys'] = [

{'alias': "anonymous id", 'generation': "curve25519", 'file': f"keyfile_{peer_id}
→˓.pem"}]

configuration['working_directory'] = f"state_{peer_id}"
configuration['overlays'] = []

To enable anonymization of all traffic through the identity layer we need to load the anonymization overlay. This is
done by editing the loaded overlays through configuration['overlays'], as follows:

for peer_id in [1, 2]:
configuration = get_default_configuration()
configuration['keys'] = [

{'alias': "anonymous id", 'generation': "curve25519", 'file': f"keyfile_{peer_id}
→˓.pem"}]

configuration['working_directory'] = f"state_{peer_id}"
configuration['overlays'] = [overlay for overlay in configuration['overlays']

if overlay['class'] == 'HiddenTunnelCommunity']

Inclusion of the 'HiddenTunnelCommunity' overlay automatically enables anonymization of identity traffic. Note
that this anonymization:

1. Requires other peers to be online.

2. Requires additional startup time. It can take several seconds for an anonymized circuit to be established.

56 Chapter 6. Table of contents

../basics/identity_tutorial.html
../basics/identity_tutorial.html

IPv8 Documentation, Release 2.13.0

6.14.2 Setting a REST API key

Purpose: disallow other local services from hijacking IPv8.

In the basic identity tutorial we started the REST API as follows:

Start the IPv8 service
ipv8 = IPv8(configuration)
await ipv8.start()
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + peer_id)

To set a REST API key, we will have to pass it to the RESTManager constructor, as follows (replacing "my secret
key" with your key):

Start the IPv8 service
ipv8 = IPv8(configuration)
await ipv8.start()
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + peer_id, api_key="my secret key")

All requests to the core will then have to use either:

1. The X-Api-Key HTTP header set to the key value (this is the preferred option).

2. A URL parameter apikey set to the key value.

Any HTTP request without either of these entries or using the wrong key will be dropped.

6.14.3 Using a REST API X509 certificate

Purpose: provide transport layer security (TLS) for the REST API.

In the basic identity tutorial we started the REST API as follows:

Start the IPv8 service
ipv8 = IPv8(configuration)
await ipv8.start()
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + peer_id)

To use a certificate file, we will have to pass it to the RESTManager constructor, as follows (replacing cert_file with
the file path of your certificate file for the particular IPv8 instance):

ipv8 = IPv8(configuration)
await ipv8.start()
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
ssl_context.load_cert_chain(cert_file)
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + peer_id, ssl_context=ssl_context)

This can (and should) be combined with an API key. Also note that if you start two IPv8 instances, you would normally
want them to have different certificates.

If you don’t have a certificate file, you can generate one with openssl as follows:

6.14. Advanced attestation service usage 57

IPv8 Documentation, Release 2.13.0

openssl req -newkey rsa:2048 -nodes -keyout private.key -x509 -days 365 -out certfile.pem
cat private.key >> certfile.pem
rm private.key

6.14.4 Setting a rendezvous token

Purpose: disallow exposure of pseudonym public keys.

In the basic identity tutorial we used HTTP requests without a rendezvous token as follows:

$ curl http://localhost:14411/identity/pseudonym1/peers
{"peers": ["TGliTmFDTFBLOg/
→˓rrouc7qXT1ZKxHFvzxb4IVRYDPdbN4n7eFFuaT385YNW4aoh3Mruv+hSjbssLYmps+jlh9rb250LYD7gEH20=
→˓"]}

By including the X-Rendezvous header entry and setting it to a shared secret in base64 encoding, we can guide a
rendezvous between peers. The following is an example of a rendezvous using the shared identifier string abc.

$ curl --header "X-Rendezvous: YWJj" http://localhost:14411/identity/pseudonym1/peers

Notes:

• Include this header in all of your requests.

• If you want to switch rendezvous tokens, first call identity/{pseudonym_name}/unload.

• Any identifier over 20 bytes is truncated.

• You may still find peers other than those you are interested in if you happen to share the same rendezvous iden-
tifier. Always communicate and verify the public key of your counterparty beforehand (use the identity/
{pseudonym_name}/public_key REST endpoint for this).

6.15 Advanced peer discovery configuration

This document assumes you have a basic understanding of peer discovery in IPv8, as documented in the peer discovery
basics. This document covers the configuration of built-in DiscoveryStrategy classes, explained in the network IO
and the DiscoveryStrategy tutorial. In particular, we address the following three topics:

• How the RandomWalk works and when to use it.

• How the EdgeWalk works and when to use it.

• How to parameterize the walk strategies in relation to the overlays they operate on.

• How the RandomChurn works and when to use it.

58 Chapter 6. Table of contents

../reference/peer_discovery.html
../reference/peer_discovery.html
../basics/discoverystrategy_tutorial.html
../basics/discoverystrategy_tutorial.html

IPv8 Documentation, Release 2.13.0

6.15.1 The Random walk strategy

The “Random” walk strategy finds new peers by randomly querying existing peers. Every IPv8 tick a random peer is
chosen from the overlay that a RandomWalk class is attached to. The chosen peer is then asked for new peers (using the
introduction-request mechanism), to which it responds with a random peer that it knows. In case a random peer knows
no other peers, it responds with no peer. In the case that no peers are available to ask for introductions, the bootstrap
mechanism is invoked.

The most important aspect of the “Random” walk strategy is that it is not a search strategy. Because there is no attempt
to avoid previously queried peers, the mechanism is very simple. However, a previously queried peer that has no new
available connections is not avoided, making the “Random” walk waste bandwidth if there are no further peers to find.
Secondly, if a strong clique forms in the connection graph it can take very long to find new peers if networks get large.
Nevertheless, the strategy is robust against networks with high node churn. For the purposes of IPv8 connections
the “Random” strategy is usually the preferred strategy as the number of connected peers remains relatively low.

6.15.2 The Edge walk strategy

The “Edge” walk strategy is another strategy to find new peers based on existing peers. However, unlike the “Random”
strategy, the “Edge” strategy is a search strategy. The “Edge” strategy uses a depth-first search through known peers.
Each edge of a search starts at a peer found by the bootstrap process. Peers are then queried in order of introduction
for a random peer they are connected to. After a configured search depth has been reached, a new edge is constructed.

The “Edge” walk is typically used to find as many peers as possible at the cost of additional overhead. Peers are not
often revisited and therefore this strategy is bandwidth efficient. Of course, managing the edges means that there is
more computational overhead in managing peers. Finding many peers is rarely preferential for “normal” IPv8 use, but
it can be useful when creating network crawlers.

6.15.3 Parameterizing walk strategies

For every walk strategy IPv8 maintains a number of target peers and for every overlay IPv8 a number of maximum
peers. The former tells IPv8 to keep calling the walker until a certain number of peers has been accepted and the latter
tells IPv8 when to stop accepting new connections. You should never ever configure the walk strategies to fill out
an overlay’s maximum peers. By doing so, you can inadvertently create network partitions.

The default settings, of 20 target peers for the walk and 30 maximum connections for the overlay, are tried and tested.
More connections do not imply a better overlay and may, in fact, prove detrimental. For example, connecting to 1000
peers may completely overload a machine’s buffers and drop most of the incoming UDP packets. There are three main
points to remember. Firstly, it is generally better to depend on a good information dissemination strategy than on a
large number of connections. Secondly, the number of connections you open has diminishing returns for the speed at
which information makes its way through your network. Finally, the more connections you open, the higher the chance
that attackers come into connection with a peer.

It is a good idea to first run extensive experiments before changing walk parameterization. Finding peers is complex
because it is (a) a process that uses asynchronous messaging, (b) the connection graph between peers is highly dynamic,
and (c) peers may not have the same parameterization.

If you do decide to change the parameterization, do not mix overlays with different parameterizations. Sampling from a
set with replacement is a statistical process. IPv8 does not come with a built-in mechanism to balance out the sampling
rate according to differences in set sizes (i.e., the number of peers in each overlay). If you do have different walk
parameterizations, max_peers, or target_peers, make sure to give each overlay a separate Network instance.

6.15. Advanced peer discovery configuration 59

IPv8 Documentation, Release 2.13.0

6.15.4 The RandomChurn churn strategy

The “Random” churn strategy is a strategy to remove unresponsive peers from overlays. Peers are randomly sampled
and if they have not been communicated with in the last thirty seconds, they will be pinged for a response. If a peer
does not respond to a ping request, it will be removed from the Network.

If you have a shared Network instance, you only need to apply the RandomChurn to a single overlay. However, be
cautioned that you need a RandomChurn for each Network instance.

By default the RandomChurn strategy checks eight peers simultaneously. A total three pings are sent, one every ten
seconds, after 30 seconds of inactivity. These settings should be adjusted if a large number of peers are being connected
to.

6.16 TunnelCommunity

This document contains a description of how to use the TunnelCommunity class for anonymous communication and
the HiddenTunnelCommunity extension of this functionality, which provides service-based end-to-end anonymous
communication. The TunnelCommunity class should be used when passively contributing to the network health and
the HiddenTunnelCommunity should be used when you want to actively send over the network.

In particular this document will not discuss how creating and managing circuits and setting up hidden services works,
for this we refer the reader to the Tor research.

6.16.1 Interface

The HiddenTunnelCommunity class provides an interface for anonymous messaging. The most important methods
of this class are:

• build_tunnels(): which will start making the required amount of circuits for the given hop count

• active_data_circuits(): will return the currently available circuits to send data over

• tunnels_ready(): the quotient of available circuits to send over, compared to settings.min_circuits

• tunnel_data(): which will send data to some destination through an exit node

• register_service(): which provide end-to-end connections for a particular service

Note that you will have to call build_tunnels() before sending any data. For example build_tunnels(1) will
construct 1 hop circuits to maintain a circuit pool of a size between settings.min_circuits and settings.
max_circuits. Initializing these settings will be covered in a later section.

You can then call tunnel_data() to send data through a circuit (and eventually an exit node) to some destination.
The circuit to send over should be one of the circuits returned by active_data_circuits(). The destination can be any ip
+ port tuple. The message type should be u"data" and finally the payload can be an arbitrary message. For example
one could send the packet 1 to ("1.2.3.4", 5):

community.tunnel_data(community.active_data_circuits()[0], ("1.2.3.4", 5), u"data", "1")

60 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

6.16.2 Hidden services

The HiddenTunnelCommunity class can also find other circuit exit points for a particular service identifier. In other
words, it is possible to anonymously find other peers communicating anonymously. To do this, some sort of DHT
mechanism needs to be registered (currently Tribler uses mainline DHT). Whatever DHT mechanism is chosen should
be placed in the dht_provider attribute of the HiddenTunnelCommunity.

Whenever a peer is found for a service, or rather the anonymizing relay for a peer, the callback defined through
register_service() is called with the available peers. You can then use this peer to tunnel_data() to. The
complete example is given below:

def on_peer(peer):
community.tunnel_data(community.active_data_circuits()[0], peer, u"data", "my␣

→˓message to this peer")
community.register_service("my service identifier", hops=1, on_peer)

6.16.3 TunnelSettings

The community can be initialized using the TunnelSettings class. This class contains the following fields:

• min_circuits: the minimum amount of circuits to create before tunnels_ready() gives a value larger than 1.0

• max_circuits: the maximum amount of circuits to create

• max_joined_circuits: the maximum amount of circuits, which are not our own, we will partake in

• max_time: the time after which a circuit will be removed (for security reasons)

• max_time_inactive: the time after which an idle circuit is removed

• max_traffic: the amount of traffic after which a circuit will be removed (for security reasons)

• become_exitnode: whether or not we will exit data for others (may have legal ramifications)

6.17 Attestation Prototype Documentation

This document describes the original design of the IPv8-based Android application and credential authority.

6.17.1 Passive Updates in the IPv8 Android Application:

Example behaviour of passive and regular updates in an IPv8 Android Application instance, regarding fellow peer
lists and their associated attributes. It should be noted that the Attestation Server is nothing more than a well-known
peer itself, accessed through an HTTP URL (127.0.0.1:8086/attestation):

6.17. Attestation Prototype Documentation 61

IPv8 Documentation, Release 2.13.0

Every second, the application will do the following:

1. Forward a (GET: peers) request to a certain peer, with the aim of updating the local list of known peers.

2. When the response for the previous request arrives, containing unique identifiers (IDs) for the fellow peers, update
the local list of known peers. Simultaneously, forward a (GET: attributes) for each peer ID, in order to obtain a
list of the transaction names and hashes as found in the latest 200 blocks associated to the peer. The information
in these responses is stored locally as well.

3. Forward a (GET: attributes) request to and for the peer contacted in Step 1. Similarly to Step 2, the response
should contain the transaction names and hashes as found in the latest 200 blocks associated to the peer. This
information is stored locally.

6.17.2 Flow of Communication in Active Attestation Requests:

Example RESTful based communication flow for serving Attestation Requests, as currently implemented in the demo
application:

1. The Client‘s user interacts with their device in order to obtain attestation for a particular attribute.

2. The Client attempts to update the list of known peers by forwarding a (GET: peers) request to a well-known
fellow peer (the Attestation Server).

62 Chapter 6. Table of contents

./resources/attestation_req.png
./resources/output_SQjlvW.gif

IPv8 Documentation, Release 2.13.0

3. The Client demands attestation for the attribute, by forwarding a (POST: request) request for the particular
attribute to every known peer, as identified by their unique ID. In this particular demo implementation, only the
well-known peer (the Attestation Server) is forwarded the request.

4. A Fellow Peer will await for at least one other fellow peer (the Client) to be present in the network, before
accepting and solving attestation requests. It will do so by repeatedly forwarding (GET: peers) requests to the
well-known peer, until this returns a non-empty list of peers.

5. The Fellow Peer will probe for outstanding (i.e. as of yet unresolved) attestation requests. To obtain such a
list, it forwards a (GET: outstanding) request to the well-known peer. The request will return a list of tuples of
the form (<b64_encoded_requesting_peer_ID>, <attribute_name>), each representing an outstand-
ing request.

6. The Fellow Peer chooses to solve the request, and attest the requested attribute. This process is done locally, in
the peer itself. The result of the attestation is encoded in Base64 format, and packed in a (POST: attest) request,
which is forwarded to the well-known peer (the Attestation Server).

7. The well-known peer (the Attestation Server), returns the attestation to the Client, as a response to their
original (POST: request) attestation request.

8. The Client receives the attestation, and displays the successful attestation status to the device user.

6.17.3 Peers and their REST APIs:

It should be mentioned that the protocol, which abides to the REST paradigms, used towards facilitating communication
between peers, in this particular implementation, is the Hypertext Transfer Protocol (HTTP).

The diagram below describes the REST API of an IPv8 object (in this current implementation version). These are
requests which can be handled by the IPv8 objects:

6.17. Attestation Prototype Documentation 63

./resources/peer_rest_api.png

IPv8 Documentation, Release 2.13.0

Below, a detailed explanation of the REST Requests is presented:

• GET Methods sent to the AttestationEndpoint:

– type = "outstanding" : Retrieve a list of tuples of the form
(<b64_encoded_requesting_peer_ID>, <attribute_name>), each representing an, as of yet,
unresolved attestation request (from a peer identified by <b64_encoded_requesting_peer_ID> for the
attribute <attribute_name>).

– type = "verification_output" : Retrieve a dictionary (equivalently, a map) of the form:
<b64_attribute_name_hash> -> (<b64_attribute_value_hash>, <confidence_value>).
The dictionary should contain a record of all the previous verification processes’ results.

– type = "peers" : Retrieve a list of Base64 encoded peer IDs, which uniquely identify the peers in the
first Identity Overlay.

– type = "attributes" : Return a list of tuples of the form (<transaction_name>,
<b64_transaction_hash>), from the the latest 200 blocks associated with a particular peer.

Optional parameters :

∗ mid = <b64_peer_mid> : Identifies the particular peer (using its unique ID) whose attributes are
being requested. If this parameter is missing, the peer shall default to the target endpoint’s peer.

• POST Methods sent to the AttestationEndpoint:

– type = "request" : Request the attestation of a particular attribute from a particular peer.

Required additional parameters :

∗ mid = <b64_peer_mid>: Identifies the peer (by its unique ID) from which the attestation is re-
quested.

∗ attribute_name = <attribute_name>: The name of the attribute, for which attestation is re-
quested.

– type = "attest" : Attest a particular attribute, for a particular peer. Additionally, return an attested
value for the aforementioned attribute.

Required additional parameters :

∗ mid = <b64_peer_mid>: Identifies the peer (by its unique ID) from which the attestation is re-
quested.

∗ attribute_name = <attribute_name>: The name of the attribute, for which attestation is re-
quested.

∗ attribute_value = <b64_attribute_value>: Base64 encoded attested value for the attribute.

– type = "verify" : Request the verification of a particular attestation and set of values associated to a
particular attribute, from another particular peer.

Required additional parameters :

∗ mid = <b64_peer_mid>: Identifies the peer (by its unique ID) from which the attestation is re-
quested.

∗ attribute_hash = <b64_attribute_hash>: A Base64 encoded hash of the attribute’s particular
attestation, subject to verification.

∗ attribute_values = <b64_attribute_values_string>: A variable length list of Base64 encoded at-
tribute values, for which verification is required. <b64_attribute_values_string> is a comma sep-
arated string of values, that is: <b64_attribute_values_string> = "<b64_attr_val_1>,
<b64_attr_val_2>,...,<b64_attr_val_N>", where N may be arbitrarily large.

64 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

• GET Methods sent to the NetworkEndpoint:

– Any GET request: Retrieve a dictionary (equivalently, a map) holding information on each veri-
fied peer in the network. The dictionary’s structure will be the following: <b64_peer_mid> ->
{"id": <peer_IP>, "port": <peer_port>, "public_key": <b64_peer_public_key>,
"services": <b64_peer_services_list>}. <b64_peer_services_list> is a list which iden-
tifies the known services supported by the peer. The dictionary itself is returned within a dictionary:
{"peers": <peers_info_dictionary>}.

The diagram below describes the REST Requests implemented in the Android Application (in this current imple-
mentation version). These requests are forwarded to, and handled by the IPv8 object’s REST APIs:

All requests must abide to the specifications detailed above (in this section).

6.17.4 Attestation Process: Detailed Explanation

Below is a detailed description of the general flow for handling incoming attestation requests. It should be noted
that this description is general, and does not necessarily refer to this particular implementation version (i.e. of the
demo). Moreover, the reader shoould also note that attestation is requested from a particular peer (see documentation
above for (POST): attest @ AttestationEndpoint), however, the actual HTTP request is forwarded to another peer,
potentially different from the attester itself. Hence, there shall be two cases for the attestation request:

1. When a peer receives the HTTP request, packs it, and forwards it to the peer from which attestation is requested
(i.e. the attester peer).

2. When the peer from which attestation is requested (i.e. the attester peer) receives the attestation request itself,
as obtained from the 1st case.

The two cases shall be further described in the sections to follow. To better understand what each of them do, how-
ever, we must introduce two callback methods of the AttestationCommunity class, located in the community.py
module. The two callbacks are stored in the self.attestation_request_callbacks field, which is an array that
should contain 2 elements, intuitively, each being a callback. The methods which set the callbacks are described in the
following (both are located in the AttestationCommunity class):

• set_attestation_request_callback(f): this is the method which stores the function f in
self.attestation_request_callbacks[0] field. f is the method actually handles the attestation. This method
is called in AttestationCommunity’s on_request_attestation method when some peer requests the attestation
from us (i.e. we are the attester). f must return a string if the attestation is made, this represents the attestation
value. If None is returned, however, the attestation is not made. As input, f receives the following:

– <sender_peer>: Peer: A Peer object representing the peer which forwarded this request to us.

6.17. Attestation Prototype Documentation 65

./resources/android_rest_api.png

IPv8 Documentation, Release 2.13.0

– <attribute_name>: string: A string object, representing the name of the attribute requiring attes-
tation.

• set_attestation_request_complete_callback(f): this is the method which stores the function f in
self.attestation_request_callbacks[1] field. f is called back when an attestation has been completed.`f`
needn’t return anything. It should accept the following input parameters:

– <sender_peer>: Peer: A Peer object representing the peer which forwarded this request to us.

– <attribute_name>: string: A string object, representing the name of the attribute requiring attes-
tation.

– <attestation_hash>: string: A string object, representing the hash of the attestation blob.

– <signer_peer> = None: string: A Peer object representing the signer of the attestation (i.e. usually
us).

Below is a description of the two scenarios of the attestation process presented above. Make sure to also read this
section’s last subsection. It contains details on how the attestation process works for this demo implementation.

Receiving the HTTP Attestation Request

In the community.py module, and the AttestationCommunity class, the method request_attestation is called
by the render_POST method in the AttestationEndpoint class, upon receiving a (POST: request) HTTP re-
quest. Attestation might be required from the peer receiving this request, or from another peer. Regardless, the
request_attestation method will do the following:

1. It will add the request to its own request cache.

2. It will create some metadata from the request, that is: the attribute’s name to be attested, and the request’s public
key.

3. It will create 3 payloads: an authentication payload (communication security between this peer and the at-
tester), the actual attestation request payload (created from the metadata), and the time distribution payload
(created from the global time). The payloads are packed together in a packet which is forwarded to the attester.

It should be noted that this method should normally be called once, when a raw (POST: request) HTTP request is
received. This method will send a packet (with the contents as described above) directly to the attester peer, which
might, in fact, be this peer, or another different peer.

Receiving the Attestation Request in the Attester Peer

In the community.py module and the AttestationCommunity class, the method on_request_attestation
is called when attestation is requested from us. That is, when an attestation packet, as created by the
request_attestation method in the AttestationCommunity is received. The on_request_attestation
method will do the following:

1. Unpack the packet, and get the 3 payloads: attestation payload, request payload, and time distribution pay-
load. The source of the request is seen as the peer which last forwarded the request.

2. The attestation payload’s metadata is retrieved and is used towards the attestation process. Attestation is per-
formed by calling the self.attestation_request_callbacks[0] with the source peer and attribute name
as parameters. If a value is returned, attestation has been performed, otherwise attestation has not been per-
formed.

3. A blob is created from the attestation value. The blob is first used as a parameter in the self.
attestation_request_callbacks[1], together with the source peer, and the attribute name. After returning
from the aforementioned call, the attestation blob is sent to the source peer (i.e. the peer from which we received
this request).

66 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

Side Note: Detailed Attestation Flow in the Demo

This case is a bit curious, since the peer forwarding the (POST: attest) HTTP request (i.e. the peer running in the
main.py script, in the method make_attribute), is indeed solving the attestation request, however, it is not actually
holding it. In the demo, the peer holding the request is the well-known peer behind localhost:8086/attestation
URL. The agent running in the main.py script is made aware of the request by having previously forwarded a (GET:
outstanding) HTTP request to the well-known peer. It will serve the attestation request by forwarding a (POST: attest)
request back to the localhost:8086/attestation (well-known) peer.

As previously mentioned, the well-known peer behind localhost:8086/attestation is actually holding the
attestation requests. For each request forwarded to this peer, a Deferred object is created, which is at-
tached to a yield. This is done in the on_request_attestation method (of the AttestationEndpoint
class), which is called as self.attestation_request_callbacks[0] in on_request_attestation method
(of the AttestationCommunity class). The yield will suspend the thread, which will now wait for the
Deferred object to yield something. For this object to yield something, someone has to call the Deferred.
callback(<value>) method on it. This is done when the agent behind main.py forwards a (POST: attest)
HTTP request to the well-known peer. In the render_POST method of AttestationEndpoint class, for this
type of request, the deferred object is retrieved, and called back with an attestation value (obtained from the
(POST: attest) request) as the <value> parameter. This allows the Deferred object to yield this value, and, in
turn, allows the on_request_attestation (of AttestationCommunity) method to continue executing, which
was halted by its call to self.attestation_request_callbacks[0], i.e. on_request_attestation (of
AttestationEndpoint). The on_request_attestation (of AttestationCommunity) eventually calls self.
attestation_request_callbacks[1], i.e. on_attestation_complete, and finally sends back the attestation to
the source peer.

6.17.5 Annex: General Notes on Demo Classes

Notes on the IPv8 application

Below is a brief description of some of the important classes in the IPv8 application (which are employed in the demo):

• The RootEndpoint class will be the one which receives the requests from the peers. This class will delegate
work to its children. Currently, the children are: AttestationEndpoint and NetworkEndpoint. All these
classes must subclass the BaseEndpoint class. The request chain is modeled like a tree, where the RootEndpoint
is the root of the tree and the AttestationEndpoint and NetworkEndpoint classes are its children (and
implicitly leaves) . When they are added, they are associated a path, which is the endpoint field of the re-
quest (e.g. attestation or network). This is how the root knows to delegate requests to the right children (e.g.
<node_ip>:<port>/<path>).

• The NetworkEndpoint handles the peer discovery requests. It is (currently) a simple class which has the simple
task of returning a list of verified nodes in the system and some relevant information on them, such as: IP, port,
public key, and offered services. However, the Android Phone Application does not forward requests (GET or
POST) to this endpoint.

• The AttestationEndpoint class handles a set of both POST and GET requests. It features a more complex
set of methods than NetworkEndpoint.

• The Response class is used to model HTTP responses. It will essentially just define a response (status_code,
content) which will then be sent back as a response.

• The RESTManager class handles the start and stop of the server’s HTTP API service. On startup, the class will
create a RootEndpoint object, which will implicitly create the two objects: a NetworkEndpoint object and an
AttestationEndpoint object. It will then attach itself to incoming request from localhost (127.0.0.1) at
port 8085. To create a RestManager object, one must submit a session object, which is in fact of the IPv8 class
type (this latter instantiation requires a configuration object).

6.17. Attestation Prototype Documentation 67

IPv8 Documentation, Release 2.13.0

Notes on the Python Scripts

The roles.py script

• Holds the class TestRESTAPI which is a subclass of RESTManager. It does the exact same thing as the
RESTManager class, with the singular difference that it listens for incoming request on the 8086 port.

• The function sleep(time) is a simple NOOP function, which essentially forces the thread to sleep for a user
specified amount of time (set by the parameter time), since it forces it to wait for a deferred to yield.

• The create_working_dir(path) function creates a working directory at the specified path, which will hold
a number of .pem files, and an sqlite database (currently, for attestation and identity matters).

• The initialize_peer(path) function is used to create a peer (of type TestRESTAPI). It will generate a default
peer configuration, which it will then modify to set the network overlays, which in this case is a AttestationCom-
munity and an IdentityCommunity. It will also set a peer discovery strategy within each of those overlays, which
in this case is a RandomWalk with a limit of 20 peers and timeout of 60 seconds. A working directory is con-
structed, as described above (create_working_dir(*)). From this configuration an IPv8 object is created,
which is in turn used to create the peer, i.e. the TestRESTAPI. This will also be assigned a (blank) HTML in-
terface at URL = 127.0.0.1:8086/attestation, that will define an access point to its REST API. The URL
will be returned as the second object of the return statement.

• The stop_peers(*peers) function will simply do its best to stop the list of peers passed as parameter to it.

• The make_request(url, type, arguments={}) function forwards a request of the specified type to the
specified url, with the specified set of arguments. In this particular example, we usually haveurl = '127.0.
0.1:8086/attestation', (GET) (for peers and outstanding attestation requests) and (POST) (for attesting
outstanding requests). This function uses an Agent object, which models a simple HTTP client, that is able to
generate HTTP requests given a set of parameters. Requests forwarded by this method are attached a callback,
which is able to read the HTTP response body.

The main.py script

• This script does not define any classes. It only defines a set of functions.

• This script creates a peer object by calling roles.py‘s initialize_peer(path), with the path =
"attester", and retrieves its URL towards accessing its REST API (idowner_restapi = 127.0.0.
1:8086/attestation).

• The wait_for_peers(idowner_restapi) function will forward a (GET: peers) request towards the
idowner_restapi URL, i.e. the peer located behind it. The methods seeks to discover other peers in the
network. It recursively calls itself every 4 seconds. Upon identification of at least one peer, it will stop calling
itself, and return the list of discovered peers.

• The wait_for_attestation_request(attester_restapi) function will forward a (GET: outstanding)
towards the idowner_restapi URL, i.e. the peer located behind it. This methods seeks to find any, as of yet,
unresolved attestation requests. It will recursively call itself every 4 seconds. Upon identification of at least one
outstanding request, it will stop calling itself, and return the list of discovered requests.

• The make_attribute() method implements the main logic of the main.py script. It is triggered by a 500 mil-
lisecond deferred call . The method’s flow is the following: It fist awaits for at least one fellow peer to show up by
calling wait_for_peers(idowner_restapi), where the idowner_restapi is the URL of the TestRESTAPI
object created as a global variable within the script. After this, it will await for at least one request to appear, by
calling wait_for_attestation_request(attester_restapi), where the idowner_restapi is the URL
of a TestRESTAPI object created as a global variable within the script. It will then solve each request by for-
warding a (POST: attest) with the requested attribute (”QR“) and a random encoded value associated to this

68 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

attribute (since it is a demo) back to the TestRESTAPI object via its public URL. Once it finishes solving the
requests it had initially found, it will end its loop and terminate its activity.

Notes on the Android Application

The MainActivity class

The following outlines the main behaviour of this class

• Every second, the following happens:

– The application will probe for peers. It does so by forwarding a (GET: peers) to a well-known peer. If
successful, the request will yield a response with an updated list of peers (represented by their unique
IDs). Response timing is arbitrary, and cannot be anticipated clearly since it depends on network and other
factors. Regardless, the peer will attempt to employ a local data structure, which is used for storing unique
peer IDs (this might have been updated in the meantime, but it is not certain). If not possible to access the
aforementioned list, it will return an empty list. It should be noted that when peer IDs are retrieved, the
application will try to retrieve and store their attributes as well (by forwarding (GET: attributes), with an
additional request parameter mid = <peer_mid>).

– Next, it will attempt to request (and if the response arrives on time, update) the well-known peer’s attributes
(by forwarding a (GET: attributes), WITHOUT the additional request parameter mid = <peer_mid>).
Generally, however, this step refers to retrieving the local attributes list of the known peers (which should
have been obtained as a collateral of the peer discovery process, as described above). If the list is not in use,
it will return it, otherwise, an empty list is returned. If the list is empty, then the button, which demands
attestation, is turned red, otherwise it is turned green.

• Asynchronously, the user may press the button on the interface, which will require that the ‘QR’ attribute be
attested. If the application has discovered peers (i.e. at least one), then it will forward an attestation request
(for this attribute) at every known peer in the network (by forwarding (POST: request) HTTP requests, with
additional request parameters mid = <peer_mid>, and attribute_name = "QR"). Although attestation is
requested from specific peers, in this demo implementation, any peer can solve them (see section Side Note:
Detailed Attestation Flow in the Demo). All requests are forwarded to the well-known peer.

The SingleShotRequest class

This class models a simple HTTP request, whose destination is hard-coded to be localhost:8085. The constructor
allows one to specify the endpoint (currently, we can have attestation or network, the latter not being used in the current
Application implementation). It is also possible to specify the method (e.g. POST, GET, PUT, etc.), and a collection
of (key, value) tuples, which act as the request’s parameters. It should be noted that one specifies the nature of the
request as part of the latter parameter, using the ('type', <req_type>) tuple (<req_type> can be outstanding,
verification_output, peers, attributes, etc.).

The AttestationRESTInterface class

This class defines a set of public methods, which handle the creation and transmission of the different types of cur-
rently available HTTP requests. The following request types are defined (all of which are forwarded to the attestation
endpoint):

• GET Method:

– retrieve_peers: Forward a request for the peers in the system. Upon receiving a response, a callback
is invoked to store the mid’s of the discovered peers. This method also forwards requests for retrieving the
peers’ attributes, and relies of the callback to handle their storing.

6.17. Attestation Prototype Documentation 69

IPv8 Documentation, Release 2.13.0

– retrieve_outstanding: Forward a request for the outstanding attestation requests in the system. Upon
receiving a response, a callback is invoked to locally store the collection of discovered pending attestation
requests.

– retrieve_verification_output: Forward a request to get (all) the results of the verification processes.
Upon receiving a response to the request, a callback is invoked which stores the verification results locally.

– retrieve_attributes(String mid): Forward a request for the attributes of a particular peer in the
system, as identified by their mid. On response, invoke a callback, and store the attributes of the peer
locally.

– retrieve_attributes(void): Forward a request for the attributes of the peer this request is sent to. On
response, invoke a callback, which stores the attributes of the peer locally.

• POST Method:

– put_request: Forward a request which asks for attestation of a particular attribute from a particular peer.

– put_attest: Attests a particular value of a particular attribute for a particular peer.

– put_verify: Forward a request which asks for verification from a particular peer of a particular set of
values associated to a particular attribute.

6.18 Using the IPv8 attestation service

This document assumes you have a basic understanding of network overlays in IPv8, as documented in the overlay
tutorial. You will learn how to use the IPv8 attestation HTTP REST API. This tutorial will use curl to perform HTTP
GET and POST requests.

Note that this tutorial will make use of the Python IPv8 service. An Android binding is also available (including demo
app).

6.18.1 Running the IPv8 service

Fill your main.py file with the following code (runnable with python3 main.py):

from asyncio import run
from base64 import b64encode

from ipv8.configuration import get_default_configuration
from ipv8.REST.rest_manager import RESTManager
from ipv8.util import run_forever
from ipv8_service import IPv8

async def start_communities() -> None:
Launch two IPv8 services.
We run REST endpoints for these services on:
- http://localhost:14411/
- http://localhost:14412/
This script also prints the peer ids for reference with:
- http://localhost:1441*/attestation?type=peers
for i in [1, 2]:

configuration = get_default_configuration()
configuration['logger']['level'] = "ERROR"

(continues on next page)

70 Chapter 6. Table of contents

../basics/overlay_tutorial.html
../basics/overlay_tutorial.html
https://github.com/Tribler/ipv8-android-app
https://github.com/Tribler/ipv8-android-app/tree/demo_app
https://github.com/Tribler/ipv8-android-app/tree/demo_app

IPv8 Documentation, Release 2.13.0

(continued from previous page)

configuration['keys'] = [
{'alias': "anonymous id", 'generation': "curve25519", 'file': "ec%d_

→˓multichain.pem" % i},
]

Only load the basic communities
requested_overlays = ['DiscoveryCommunity', 'AttestationCommunity',

→˓'IdentityCommunity']
configuration['overlays'] = [o for o in configuration['overlays'] if o['class']␣

→˓in requested_overlays]

Give each peer a separate working directory
working_directory_overlays = ['AttestationCommunity', 'IdentityCommunity']
for overlay in configuration['overlays']:

if overlay['class'] in working_directory_overlays:
overlay['initialize'] = {'working_directory': 'state_%d' % i}

Start the IPv8 service
ipv8 = IPv8(configuration)
await ipv8.start()
rest_manager = RESTManager(ipv8)
await rest_manager.start(14410 + i)

Print the peer for reference
print("Starting peer", b64encode(ipv8.keys["anonymous id"].mid))

await run_forever()

run(start_communities())

Running the service should yield something like the following output in your terminal:

$ python3 main.py
Starting peer aQVwz9aRMRypGwBkaxGRSdQs80c=
Starting peer bPyWPyswqXMhbW8+0RS6xUtNJrs=

You should see two messages with 28 character base64 encoded strings. These are the identifiers of the two peers
we launched using the service. You can use these identifiers for your reference when playing around with sending
attestation requests. In your experiment you will see other identifiers than the aQVwz9aRMRypGwBkaxGRSdQs80c= and
bPyWPyswqXMhbW8+0RS6xUtNJrs= shown above.

As a sanity check you can send your first HTTP GET requests and you should see that each peer can at least see the
other peer. Note that you might find more peers in the network.

$ curl http://localhost:14411/attestation?type=peers
["bPyWPyswqXMhbW8+0RS6xUtNJrs="]
$ curl http://localhost:14412/attestation?type=peers
["aQVwz9aRMRypGwBkaxGRSdQs80c="]

6.18. Using the IPv8 attestation service 71

IPv8 Documentation, Release 2.13.0

6.18.2 Functionality flows

Generally speaking there are two (happy) flows when using the IPv8 attestation framework. The first flow is the en-
rollment of an attribute and the second flow is the verification of an existing/enrolled attribute. Both flows consist of a
distinct set of requests (and responses) which we will explain in detail in the remainder of this document.

To test a flow, we start the two peers we created previously. If you did not remove the key files (*.pem) after the first
run, you will start the same two peers as in the last run. In our case the output of starting the service is as follows:

$ python main.py
Starting peer aQVwz9aRMRypGwBkaxGRSdQs80c=
Starting peer bPyWPyswqXMhbW8+0RS6xUtNJrs=

In our case this means that peer aQVwz9aRMRypGwBkaxGRSdQs80c= exposes its REST API at http:/
/localhost:14411/ and peer bPyWPyswqXMhbW8+0RS6xUtNJrs= exposes its REST API at http://
localhost:14412/. If you did not modify the ports in the initial scripts, you will have two different peer
identifiers listening at the same ports. For convenience we will refer to our first peer as Peer 1 and our second peer as
Peer 2.

As a last note, beware of URL encoding: when passing these identifiers they need to be properly formatted (+ and =
are illegal characters). In our case we need to use the following formatting of the peer identifiers in URLs (for Peer 1
and Peer 2 respectively):

aQVwz9aRMRypGwBkaxGRSdQs80c%3D
bPyWPyswqXMhbW8%2B0RS6xUtNJrs%3D

Enrollment/Attestation flow

To enroll, or attest, an attribute we will go through the following steps:

1. Sanity checks: Peer 1 and Peer 2 can see each other and have no existing attributes.

2. Peer 1 requests attestation of an attribute by Peer 2.

3. Peer 2 attests to the requested attribute.

4. Peer 1 checks its attributes to confirm successful attestation.

0. SANITY CHECK - First we check if both peers can see each other using their respective interfaces.

$ curl http://localhost:14411/attestation?type=peers
["bPyWPyswqXMhbW8+0RS6xUtNJrs="]
$ curl http://localhost:14412/attestation?type=peers
["aQVwz9aRMRypGwBkaxGRSdQs80c="]

Then we confirm that neither peer has existing attributes. Note that http://*:*/attestation?type=attributes
is shorthand for http://*:*/attestation?type=attributes&mid=mid_b64 where the identifier is equal to that
of the calling peer.

$ curl http://localhost:14411/attestation?type=attributes
[]
$ curl http://localhost:14412/attestation?type=attributes
[]

1. ATTESTATION REQUEST - Peer 1 will now ask Peer 2 to attest to an attribute.

72 Chapter 6. Table of contents

IPv8 Documentation, Release 2.13.0

$ curl -X POST "http://localhost:14411/attestation?type=request&mid=bPyWPyswqXMhbW8
→˓%2B0RS6xUtNJrs%3D&attribute_name=my_attribute"

2. ATTESTATION - Peer 2 finds an outstanding request for attestation. Peer 2 will now attest to some attribute value
of Peer 1 (dmFsdWU%3D is the string value in base64 encoding).

$ curl http://localhost:14412/attestation?type=outstanding
[["aQVwz9aRMRypGwBkaxGRSdQs80c=", "my_attribute", "e30="]]
$ curl -X POST "http://localhost:14412/attestation?type=attest&
→˓mid=aQVwz9aRMRypGwBkaxGRSdQs80c%3D&attribute_name=my_attribute&attribute_value=dmFsdWU
→˓%3D"

3. CHECK - Peer 1 confirms that he now has an attested attribute.

$ curl http://localhost:14411/attestation?type=attributes
[["my_attribute", "oEkkmxqu0Hd/aMVpSOdyP0SIlUM=", {"name": "my_attribute", "schema": "id_
→˓metadata", "date": 1592227939.021873}, "bPyWPyswqXMhbW8+0RS6xUtNJrs="]]
$ curl http://localhost:14412/attestation?type=attributes
[]

Attribute verification flow

To verify an attribute we will go through the following steps:

1. Sanity checks: Peer 1 and Peer 2 can see each other and Peer 1 has an existing attribute.

2. Peer 2 requests verification of an attribute of Peer 1.

3. Peer 1 allows verification of its attribute.

4. Peer 2 checks the verification output for the requested verification.

0. SANITY CHECK - First we check if both peers can see each other using their respective interfaces.

$ curl http://localhost:14411/attestation?type=peers
["bPyWPyswqXMhbW8+0RS6xUtNJrs="]
$ curl http://localhost:14412/attestation?type=peers
["aQVwz9aRMRypGwBkaxGRSdQs80c="]

Then we confirm that Peer 1 has the existing attribute (my_attribute from the last step).

$ curl http://localhost:14411/attestation?type=attributes
[["my_attribute", "oEkkmxqu0Hd/aMVpSOdyP0SIlUM=", {}, "bPyWPyswqXMhbW8+0RS6xUtNJrs="]]
$ curl http://localhost:14412/attestation?type=attributes
[]

1. VERIFICATION REQUEST - Peer 2 will now ask Peer 1 to verify an attribute.

$ curl -X POST "http://localhost:14412/attestation?type=verify&
→˓mid=aQVwz9aRMRypGwBkaxGRSdQs80c%3D&attribute_hash=oEkkmxqu0Hd%2FaMVpSOdyP0SIlUM%3D&
→˓attribute_values=dmFsdWU%3D"

2. VERIFICATION - Peer 1 finds an outstanding request for verification.

6.18. Using the IPv8 attestation service 73

IPv8 Documentation, Release 2.13.0

$ curl http://localhost:14411/attestation?type=outstanding_verify
[["bPyWPyswqXMhbW8+0RS6xUtNJrs=", "my_attribute"]]
$ curl -X POST "http://localhost:14411/attestation?type=allow_verify&mid=bPyWPyswqXMhbW8
→˓%2B0RS6xUtNJrs%3D&attribute_name=my_attribute"

3. CHECK - Peer 2 checks the output of the verification process.

$ curl http://localhost:14412/attestation?type=verification_output
{"oEkkmxqu0Hd/aMVpSOdyP0SIlUM=": [["dmFsdWU=", 0.9999847412109375]]}

74 Chapter 6. Table of contents

CHAPTER

SEVEN

SEARCH

• genindex

• modindex

• search

75

	Why does IPv8 exist?
	IPv8 Features
	The science behind IPv8
	IPv8 Example
	Getting help
	Table of contents
	Installing Libsodium (Windows and MacOS only)
	Windows
	MacOS

	Creating your first overlay
	Running the IPv8 service
	Running two IPv8 services
	Loading a custom overlay
	Printing the known peers
	Adding messages

	Storing states in IPv8
	When you need a state
	The hard way
	The easier way

	Unit Testing Overlays
	Files
	Why and How?
	Deadlock Detection
	Creating Instances
	Communication
	Piggybacking on Introductions
	Using the RequestCache
	Fragile Packet Handling
	Temporary Files
	Asserting Message Delivery
	Shortcut Reference

	Task Management
	What is a task?
	The TaskManager
	Adding tasks
	Periodic and delayed tasks
	Community Integration
	Futures and caches

	Network IO and the DiscoveryStrategy
	The DiscoveryStrategy
	Using a DiscoveryStrategy

	Using the IPv8 attestation service
	Running the IPv8 service
	Functionality flows
	Enrollment/Attestation flow
	Attribute verification flow

	Peer discovery basics
	Community Best Practices
	SOLID by example
	Community initialization

	IPv8 configuration options
	Overlay Specifications
	Key Specifications

	IPv8 bootstrapping
	Bootstrap servers (rendezvous nodes)
	Using bootstrap servers
	Running a bootstrap server

	UDP broadcasts
	Using UDP broadcasts

	Making your own Bootstrapper

	Key generation options
	Message serialization
	Datatypes
	The ez_pack family for Community classes
	Using external serialization options
	Custom serialization per message
	Custom serialization formats
	Custom Community data handling

	Nested Payloads

	Advanced attestation service usage
	Enabling anonymization
	Setting a REST API key
	Using a REST API X509 certificate
	Setting a rendezvous token

	Advanced peer discovery configuration
	The Random walk strategy
	The Edge walk strategy
	Parameterizing walk strategies
	The RandomChurn churn strategy

	TunnelCommunity
	Interface
	Hidden services
	TunnelSettings

	Attestation Prototype Documentation
	Passive Updates in the IPv8 Android Application:
	Flow of Communication in Active Attestation Requests:
	Peers and their REST APIs:
	Attestation Process: Detailed Explanation
	Receiving the HTTP Attestation Request
	Receiving the Attestation Request in the Attester Peer
	Side Note: Detailed Attestation Flow in the Demo

	Annex: General Notes on Demo Classes
	Notes on the IPv8 application
	Notes on the Python Scripts
	The roles.py script
	The main.py script

	Notes on the Android Application
	The MainActivity class
	The SingleShotRequest class

	The AttestationRESTInterface class

	Using the IPv8 attestation service
	Running the IPv8 service
	Functionality flows
	Enrollment/Attestation flow
	Attribute verification flow

	Search

